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Preface

During the last 15 years I was involved in planning, deployment, and op-
erations of IT systems for major companies. Those systems are mission-
critical: the customers’ business depends on their availability. The sys-
tems are required to be highly available and to protect against all kinds of
problems, like hardware failures, software issues, human errors, through
to physical disasters.

I learned that there are misunderstandings between customers, plan-
ners, and vendors about what high availability is, what can be achieved
with IT systems, and where their limitations are. I also recognized that
disaster recovery is only a feature of high availability, but is often seen as
an independent topic.

This book addresses this area with an end-to-end view and makes
it available as single piece of material: from requirements gathering to
planning, implementation, and operations. Another missing piece is sup-
plied, an approach to develop an architecture which leads to highly avail-
able systems that are robust and are able to recover from the relevant fail-
ure scenarios. But identification of failure scenarios is still a kind of art,
mostly based on individual experiences. Selection of a solution is driven
by a process, and not by products that claim protection but do not consider
the whole picture.

With that end-to-end view, we get a structured approach that leads
from requirements to possible failure scenarios to a successful solution.
That was the motivation to write this book. It addresses these topics and
is targeted at all parties involved, enabling them to speak a common lan-
guage and manage their mutual expectations.

The goal of this book is to explain and discuss architecture, technology,
solutions, and processes. Since products and features are too short lived
for the aim of this book, it does not review, compare, or recommend any
particular products.
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1

Introduction

For information technology (IT), the last decade has been a revolution.
Our lives and our businesses depend on IT to a magnitude that has not
been seen as possible before. And even though there is a lot of fuss about
this change, many people have still not realized their dependencies on
functioning IT systems. But this book will not tell you how one preaches
the importance of IT. Instead, it is for the situations where the impor-
tance is acknowledged in principle, and where we have to map business
objectives to IT availability plans and execute those plans.

In other words, the mission statement of this book is

Show how it is ensured that IT services are available
when they are needed, balancing benefit and costs.

The central question that will be answered is “how,” not “why.” We use a
holistic view of that topic. When a solution is planned and implemented,
every aspect must fit together and it is not sensible to restrict ourselves
to certain areas.

Therefore this book approaches solutions to IT service availability and
continuity from planning, via implementation descriptions, through to op-
erations. This covers the whole range of work areas that are needed to
establish and maintain a solution.

In addition, technical areas are covered too. We will discuss prob-
lems that hardware, software, infrastructure services, human actions,
and company locations (sites) cause and the solutions that they can pro-
vide. We do not want to rest with descriptions that explain how one can
ensure IT service availability in the case of hardware and software fail-
ures, but that do not mention floods or human errors by system adminis-
trators. Instead, the whole problem and solution range is accommodated,
just like all work areas.

The book’s goal is achieved with the experience that I acquired in
planning and implementing successfully high-availability and disaster-
recovery solutions in the last 15 years, for major international compa-
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nies. The approaches and templates used have been successfully realized
in many places and resulted in lots of practical experience about what
works and where typical problems and stumbling blocks are – this book
will make this experience available to you as well.

To achieve that goal, a solution-oriented presentation structure has
been chosen. The first chapters will introduce the problem domain and
will show the generic structure of possible solutions. The following chap-
ters will present components of that structure, one after another.

But let us first describe the intended audience of this book in the next
section. Then, Sect. 1.2 on p. 4 presents the book’s roadmap in more detail,
and Sect. 1.3 finishes the introduction with real-life examples.

1.1 Audience

In today’s tight financial climate, business consequences of IT misbehav-
ior or outages are often not realistically analyzed. Therefore the myth
remains that high availability and disaster recovery is only something
for large enterprises with an IT staff in the hundreds or thousands, big
data centers, and established IT operations. But by now, solutions are ma-
ture and standardized enough to be able to be implemented in small work
groups and with less formal processes. All that is needed is the intention
to do good work and to care for quality.

We need to understand the link between business objectives and IT
solutions. But we want to reuse existing design patterns; solutions that
are created anew for each company’s situation are too expensive. For that,
we need to understand also the possibilities and limitations of typical
IT solutions to high availability and disaster recovery. Only with that
understanding firmly in place are we able to plan and implement properly
a solution that fits to our situation.

The information from this book is not only of interest if one wants to
implement high availability and disaster recovery in one’s own company.
Quite often, IT is outsourced, as it is not seen to be at the heart of one’s
business and one hopes to get better services from professional compa-
nies that concentrate on IT. Then one still needs the information from
this book to negotiate contracts – in particular, service level agreements
(SLAs) – with suppliers. Do not forget that one can outsource implemen-
tation and operations, but one cannot outsource responsibility.

That said, the book’s main target audience is architects, system de-
signers, and those who shall implement the systems. But it has also con-
tent for executive managers. For successful projects, one needs to look
beyond one’s own nose and read up on topics that are in other spheres of
activities. This book will provide information about such adjacent areas,
for each audience group. So let us have a look at the information you can
get from it.



1.1 Audience 3

� Executives – CIO and CTO

For chief technology officers and for chief information officers who are
interested in technical matters, the book delivers:

• An overview of IT availability and continuity. This will provide ev-
erything that an executive needs to know about high availability and
disaster recovery.

• Technical information that is needed to communicate with architects
and system designers.

• A link between business requirements and IT solutions.

It serves as the guide for how to give good objectives and guidance to
the project team that has to implement high availability and/or disaster
recovery. It also has information that allows us to judge the quality of
their work, and to understand the technical reports that they are produc-
ing.

� Architects and System Designers

This audience group is those who are responsible for the actual system
design and planning. This is the main audience of this book.

• A roadmap is presented that will yield a full-fledged architecture that
goes beyond mere system design, including objective collection and
business process architecture.

• A structured approach for solution finding and implementation is pre-
sented. This is the process that delivers the system design, together
with explanations on how one can adapt them to local requirements.

• Solution structures are worked out, to help to divide the big problem
domain into chunks that can be approached one at a time. This is the
template where we can draw our system design from.

• Technologies are presented that build a toolbox for realization of high
availability and disaster recovery.

• Adjacent areas that are not strictly part of the architect’s or system
designer’s task are mentioned as well, and serve as an introduction.
In particular, operational aspects are covered.

We take a broad view of the topics covered that caters for generalists
and not for specialists who want to know the ins and outs of each bit in
every configuration file. The book’s content will help by providing an end-
to-end view and not losing itself in the deep trenches of particularities of
specific products or specific versions.

� System Implementors

Solution structures and technologies are the meat that make up the later
chapters of this book. These parts of book cater especially for those system
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implementors who are interested in practical experience that they can
use in their own environment.

• The central message for this audience group is how to implement a
high-availability or disaster-recovery solution in such a way that it
can be operated successfully and efficiently.

• To help with that, typical pitfalls and tricks are presented.
• Requirements are featured explicitly that help to trace back imple-

mentation plans to the system designer’s work, and ultimately to the
business objectives.

• The process of architectural planning is also of great interest as it
enables better communication with one’s colleagues.

In the end, as every implementor knows, failure will happen and can-
not be avoided. It is necessary to plan for it in advance, both from a pro-
cess and from a technical point of view, to take a broad view of the needs
and the possibilities of implementation work. How this is done, both in
principal and specifically for actual technology components, is an impor-
tant aspect of this book.

1.2 Roadmap of This Book

We will start with the elementary concepts to get an introduction to the
overall theme. Then two chapters will present the big picture: architec-
ture and system design. After that, we will go into technical details and
present categorized solution strategies. Each category will have its own
chapter.

Within the technical chapters, we will present solutions that work for
high availability and disaster recovery alike, but we will focus on high
availability. A chapter on disaster recovery pulls together all parts from
all solution categories and tells what is special about it.

The appendices feature a treaty on reliability and the math of it; we
give an introduction to data centers and to service support processes. An
index and the bibliography close the book.

That is the roadmap in general terms. Let us introduce each chapter
with a short summary to give you more information.

� Chapter 2: Elementary Concepts

Business continuity is introduced as the overall goal of our activities. IT
service continuity is our task to contribute to that goal. To achieve that,
we need categorization of systems and outages, to leverage existing con-
cepts. Minor outages are those that happen more often and do not do
much damage; protection against or recovery from such minor outages
is the task of high availability. Major outages are less probable and are
covered by disaster recovery.
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Quantification of availability is presented. We use them also in SLAs,
which are part of (formal or informal) contracts between the IT depart-
ment, IT contractors, and business owners.

The same basic approach is used to achieve high availability and dis-
aster recovery: robustness and redundancy. With that tool in our arsenal,
we are ready to design layered solutions that protect our services in depth
– we can handle failures on several system levels.

� Chapter 3: Architecture

The architecture is described on those three abstraction levels: business
objectives describe what shall be achieved. The conceptual model explains
how the solution fits into business processes, and how it is connected to
other IT processes. Furthermore, the architecture contains the system
model that describes the technical solution strategy.

For each of these three abstraction levels, several questions are an-
swered: What is the system concerned with? How does it work? Where
is the data worked with, or where is functionality achieved? Who works
with data and achieves functionality? And when is it done? Answering all
these questions for each abstraction level gives us a structured presenta-
tion of the complete architecture.

� Chapter 4: System Design

The system design has the technical meat of our solution. It describes
what systems are protected against which outages and how this is done.
To achieve such a description in a structured way, we introduce the con-
cept of the system stack, a categorization of those components that make
up IT systems and services. The system stack is so important that we
use it to structure the rest of this book when we present technological
solutions for component categories.

We pick up the elementary concepts of robustness and redundancy and
explain them in more detail. This cumulates in a solution roadmap that
shows how we create a good system design that fulfills our requirements,
starting from failure scenarios. As an illustration, we conclude that chap-
ter with solution patterns and with the use case of high availability for
an SAP server.

� Chapter 5: Hardware

Hardware is the component category where high availability was first
realized; therefore, we find the most mature solutions in this area. First
we look at all hardware components of a computer system and explain
the technology that can be used for a high-availability solution.

Special focus is given to disk storage because it is very important –
after all, all our business data is kept here. But we do not stop at the dif-
ferent technologies that make disks highly available, we also present stor-
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age subsystems, appliances that provide storage area networks (SANs) or
network-attached storage (NAS).

Since we do not build our systems ourselves, we need to pay special
attention to vendor selection. When the purchasing decisions have been
made, installation, maintenance, and operation are also important, and
these topics are handled in this chapter.

� Chapter 6: Operating Systems

High availability on the operating system level is the most widely used
technology today. It is named host clustering and comes in two forms, as
failover clusters and as load-balancing clusters, both are presented in this
chapter.

Failover clusters make IT services independent of the computer sys-
tem they run on. When a hardware error or a software crash occurs, the
service is migrated to another computer system in the cluster. This clus-
ter technology relies on disk storage that can be accessed from all systems
and that is redundant in itself.

Load-balancing clusters distribute server requests over a set of identi-
cally configured systems. The distribution handles outages of one of those
systems. This kind of cluster can only be used if the application has no
state, since there is no shared storage between the cluster systems.

The chapter concludes with an excursion on the future of host clus-
tering in the face of current trends towards server consolidation. Host
clustering is based on the usage of extra computer systems, to get redun-
dancy for failure recovery. Server consolidation targets the reduction of
the computer systems used and has therefore the exact opposite goals.
Host virtualization may help to combine both objectives, though today
this remains a trend and future development cannot be assured.

� Chapter 7: Databases and Middleware

Middleware components are application-independent software products
that are integrated as part of an application to realize an IT service. The
prime example of middleware components is database servers: they are
utilized in many mission-critical applications. Other middleware compo-
nents are Web servers, application servers, messaging servers, and trans-
action managers.

This chapter presents the high-availability and disaster-recovery so-
lutions that are available as features of middleware components. Most
prominently, database clusters are introduced.

� Chapter 8: Applications

After all base components have been covered, it remains for us to de-
scribe how high availability is achieved for applications. Seldom will we



1.2 Roadmap of This Book 7

implement full redundancy within an application – instead, we will uti-
lize one of the high-availability options that we learned about in the pre-
vious chapters. But we have to decide which option to use, e.g., if we want
to utilize a host clustering solution or if we want to use middleware clus-
tering.

The solution approach chosen often has demands on the application,
either on its realization or on its implementation. For example, one can-
not use a failover cluster for any application, the application must fulfill
some requirements. These requirements are spelled out in detail.

� Chapter 9: Infrastructure

Infrastructure is the set of application-independent IT services that are
used by an application. Most important, this is the network and associ-
ated services like Domain Name Service (DNS), Dynamic Host Configu-
ration Protocol (DHCP), or directory and authentication services.

This chapter will show how we create a highly available network in-
frastructure and will also present high-availability solutions for three im-
portant services: DHCP, DNS, and directory servers. It concludes with the
influence of high-availability solutions on backup and monitoring.

� Chapter 10: Disaster Recovery

The previous chapters will have presented many solutions that apply
both for high availability and for disaster recovery. But disaster recovery
has specific important aspects that shall be presented in context; there-
fore, this chapter presents the overall approach, a conceptual model for
disaster recovery, and the technology that is used to realize it.

A description of a prototypical disaster-recovery project rounds off the
topic, as well as a step-by-step description of procedures that are used to
activate backup systems in case of a disaster.

� Appendices

Reliability of components is an important property to achieve high avail-
ability. In particular for hardware components, reliability numbers are
known and one can use them to assess reliability of combined systems.
Appendix A introduces reliability calculations and statistics, the math
that is necessary to do those assessments.

Data centers are the topic of Appendix B. We will not capture every-
thing that is needed to create a top-notch data center – that goes beyond
the book’s scope. But a good data center is an important asset in imple-
menting high availability, and we will see what aspects contribute to that
importance.

Last, but not least, service support processes are described in Ap-
pendix C. The presentation orients itself along the categories of the Infor-
mation Technology Infrastructure Library (ITIL), an industry standard of
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processes of how one operates IT systems properly. Good operation is very
important for high availability and disaster recovery – all excellent im-
plementation strategies and work will not help, if failures get introduced
during maintenance operations. This appendix presents those parts of the
ITIL processes that are especially relevant.

1.3 Real-World Examples

Before we start with business issues and elementary concepts in Chap. 2,
let us entertain ourselves with some “war stories” of real-world IT prob-
lems and set the tone of issues we strive to avoid in our own installations.

Example 1 (Deferred overdue upgrade of legacy system). Over the
2004 Christmas holidays, Comair – a regional subsidiary of Delta Air
Lines – needed to reschedule a lot of flights owing to severe winter storms.
Reportedly, the aging crew management system software could not han-
dle more than 32 000 changes per month. (Without knowing the cause ex-
actly, let us assume that the real limit was 32767±1. . . ) When this limit
was exceeded for the first time, the whole system crashed on December 24
and return to full operations took until December 29.

This IT crash caused cancellations or delays of roughly 3900 flights
and stranded nearly 200 000 passengers. The costs for Comair and its
parent company, Delta Air Lines, were estimated to be in the $20 million
ballpark, not counting the damaged reputation and subsequent investi-
gation by the US Department of Transportation.

The reasons sound familiar to everybody who works in IT departments
of large companies these days: Y2K, 9/11 fallout for aerospace companies,
company acquisition by Delta, and a very tight lid on IT expenses brought
enough workload for the IT department. The technical staff knew about
the problem and management did not believe them. Replacing a suppos-
edly working legacy system did not have high priority, and risk manage-
ment was not prudent enough. Actually, the real issue was that they had
no contingency plan for outages of that mission-critical system, and no
means to create a quick workaround for the incident.

Example 2 (Network outage for a whole company). Flaky connec-
tions between network switches caused redundancy configurations to fail,
turning the whole network unfunctional and thus almost all IT systems
of a big manufacturing company unusable. Luckily, the actual manufac-
turing operation was not impaired, as the IT systems deployed there had
their own separate network and were able to operate for several hours
without connectivity to the company network.

The network used redundant lines between switches and relied on the
Spanning Tree Protocol (STP) to create a loop-free topology that is needed
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for network operations. The flaky lines resulted in continuous recalcula-
tions of the minimum spanning tree, overloading the switch CPUs at one
point. Owing to problems in the switches’ operating system, a loop was
formed and this error situation propagated to all other network devices,
rendering them all unfunctional.

Before that case happened, there were anecdotal reports about prob-
lems with STP, but no real hard data about its reliability was available.
Therefore this redundant architecture was chosen, not knowing that it
does not scale well enough for big installations. Even though the network
staff were able to remedy the deficiency quickly, a complete reimplemen-
tation of the network architecture had to be done later on. This raised the
incident costs even more, beyond the actual damages that were caused by
the nonreachability of all servers.

This is an example case of a technology that was not robust enough
for the creation of highly available infrastructure designs. Only experi-
ence would have prevented such a design; the importance of experience
is discussed in more detail in Chap. 3.

Example 3 (Propagation of human error during upgrade). Even
in situations where lots of effort was spent to create architectures that
survive failures, there is always the last resort for error causes: our
colleagues. A hierarchical storage management (HSM) environment im-
plemented both the usual high availability and also intended disaster-
recovery protection by placing backup tapes at a remote location, and
running the HSM system as a metro cluster. This means that two HSM
systems were placed at two different sites, with a high-speed network
connection. Each system has a complete set of all data, on a tape library
that is connected to it.

Upgrading a tape library and exchanging all backup tapes for new
high-capacity tapes caused the complete erasure of all existing tapes.
What happened is that cables got exchanged between two tape drives.
Formatting of the new tapes was started in one drive. The exchanged
cables only controlled the data transfer (write and read) commands; the
load commands were transferred over another cable that was connected
correctly. Since an HSM tape library is active all the time, new read or
write requests led to loading of tapes into the wrong drive, where they
were dutifully formatted. At the same time, all data access commands re-
turned errors since they tried to access the new unformatted tapes; but
some time was needed to detect this. In that time span, most of the tapes
had already been reformatted.

By all accounts, this could be classified as human error and as soft-
ware error. Of course, the cable should not have been exchanged. But such
errors are so common that good software would take them into account
and would not reformat tapes that are formatted already and which have
data on them, without being told explicitly to do so.
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Single point of failure analysis, as explained in Chap. 3, would have
helped to prevent that failure.

Example 4 (Failover cluster rendered useless). A large business-
important file server, with several terabytes of data, had a file system
corruption that led to whole system aborts (colloquially called “system
panic”). This file server was a highly available failover cluster system
with two nodes; file system errors caused the file service to switch to an-
other cluster node. The file system itself switches too, the error is not no-
ticed during service initialization, and after a few minutes the new node
panics again. The service switches continuously between the two cluster
nodes.

Even though the switch ping-pong was noticed early, analysis of the
problem needed a while. Then the decision had to be made to restore the
whole file system. Such a decision could not be made by system adminis-
trators, as it leads to several hours of downtime. Instead the decision had
to be escalated to senior IT management. After some time, it was decided
to restore the system from backup tapes, and this was done.

In total, a downtime of 10 h occurred for that business-important ser-
vice. Since 1000 office workers used that service and needed that service
for their work, this lead to roughly 10 000 lost working hours, which is
quite a feat. As a follow-up activity, proper disaster recovery for that ser-
vice was established, to prevent such long outages in the future.

What happened here is that the marketing hype that high-availability
clusters provide round-the-clock availability was believed. Even though
the architects knew that there were still single points of failure – not
least the files that exist only once in the cluster – management did not
allocate enough money to protect against those failures. Only after a dis-
aster happened, fault protection against data corruption was established.

Proper single point of failure analysis, as explained in Chap. 3, would
have detected that design flaw. Chapter 6 details more limitations of tra-
ditional failover clusters.

Example 5 (System errors in SAP installation). Many medium-sized
and large companies use SAP as their enterprise resource planning (ERP)
system. Their whole financial and human resources departments depend
on the functionality of those systems: purchasing, invoicing, inventory
management, and other areas do not work without them. In addition,
all financial planning data is kept in those systems; storing such data is
subject to many regulatory requirements.

For a medium-sized business, implementation of a high-availability
infrastructure for the SAP server was deemed too complex and too expen-
sive. The system vendor sold a “4-h service contract” and management
thought that this is sufficient outsourcing to mitigate outage risks.

After a hardware outage and subsequent database crash, it needed
three business days to get a new system in place and up again. One had
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overlooked that the “4-h” time limit was about vendor reaction time, not
about time to repair. Having all financial data not available for 3 days
clearly did not satisfy business expectations. Luckily, postponing invoice
creation for 3 days did not harm the company much.

Example 6 (SAP installation that works). Owing to their importance
for business finance, SAP installations are an area where cautious busi-
ness owners spend money; therefore, they make up not only good exam-
ples for outages, but also for well-established and thoroughly engineered
solutions that deliver high availability.

Outsourcing companies like EDS operate hundreds of SAP installa-
tions in a standardized manner and deliver highly available services for
many companies’ financial and human resources departments. They do so
by using standardized templates for planning, implementation, installa-
tion, and operations. Up times of these services are measured in months
or even years, and outages are in the small minute ranges.

Such design, implementation, and operation templates combine a
multitude of methods that range from proper vendor selection, choosing
the right hardware combination, using cluster technology to provide re-
dundant solutions, and – almost most important of all – defining proper
change and problem processes to keep the solution highly available over
their lifetime.

Example 7 (Disaster recovery for a snowstorm). On March 13, 1993,
a data center in New Jersey became a casualty of the blizzard that was
later dubbed “the worst storm of the century.” A section of the roof col-
lapsed under the weight of the snow and buckled the walls. Fortunately,
nobody died and the operational staff were able to perform a controlled
shutdown of all systems, and all employees were evacuated.

The outage of this site concerned 5200 automated teller machines
(ATM), 6% of the ATMs nationwide. Execution of the disaster recovery
plan was started immediately; that called for the creation of an alterna-
tive site and relocation of service to that place. First, a temporary data
recovery facility with restricted functionality and performance was made
operational; within 48 h relocation to a new permanent site had been
done. In the meantime, prearrangements with dozens of regional ATM
networks kicked in. These networks performed stand-in processing until
IT systems and the network were up and running again.
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Examples Summary

Let us have a look at the examples with unnecessary outage problems,
where we list the root causes for each one. One thing is clear from the
outset: a recurring root cause is that there was a single point of failure,
i.e., not enough redundancy in the implemented solution, or that redun-
dancy was intended but was designed or implemented the wrong way.

Example
Root cause

1 2 3 4 5

Single point of failure × × ×
System used beyond design limits × ×
Software error × ×
Human error ×
Wrong design assumptions ×

Two other failure causes were close runners-up: that a system is used
beyond the limits that it was designed for, and that software errors occur
that make all other fault protection methods moot. In fact, many other
examples show that human errors also cause major outages quite often;
again and again Murphy’s Law is proved true. Analysis of more outage
examples brings into focus that we find the same fault causes again and
again – and that is no coincidence. While there are many details that can
go wrong, the basic reasons do not vary so much. Experience shows that
the five reasons from the table are representative for a good part of many
problems that we know about.
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Elementary Concepts

The introductory examples set the stage for this book. This chapter shall
give us the first course of our meal. It will introduce the most elementary
terms and concepts that we need throughout the book. It is intended to
set up a vocabulary that we can use, e.g., it defines high availability and
disaster recovery. In addition, it explains principal problem categories and
solution approaches.

This is done in the following order:

• Business issues are failure consequences, overall goals, and risk
management; all of them are presented in Sect. 2.1.

• System and outage categorization and particularly the notion of
minor and major outages are introduced in Sect. 2.2.

• High availability is defined in Sect. 2.3; definitions for other related
terms (availability, reliability, and serviceability) are also introduced.

• Disaster recovery is defined in Sect. 2.4.
• Methods to quantify availability are presented in Sect. 2.5, and

their problems as well.
• Service level agreements (SLAs) are the topic of Sect. 2.6; we con-

centrate on the technical stipulations that should be included in them.
• Robustness and redundancy are our basic approach that we use

all throughout the book; they are introduced in Sect. 2.7.
• Layered solutions use this basic approach several times and estab-

lish multiple precautions against failures, as explained in Sect. 2.8.

This chapter has content for all reader groups, from executives and busi-
ness owners, to project managers and architects, to system administra-
tors. The basics are needed by all of them, otherwise communication
about high-availability and disaster-recovery projects become impossible.
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2.1 Business Issues

The need to protect against outage consequences seems obvious, but we
should not take it for granted. Instead, we must be able to communicate
the business needs that lead to the need for highly available systems and
disaster recovery. For that, we need a structured view of the business
consequences of outages. Only with money-associated references will we
be able to justify the expense for fault protection.

For a business, an IT outage is not the real issue, but the consequences
that are associated with it are. As Fig. 2.1 shows, IT outages affect either
revenues or costs and we either can determine the effect directly or we
can estimate it. Since costs are more easily determined and quantified
than revenue effects, let us start with them.

Direct costs are associated with repair of IT defects, needed to continue
IT operations. Devices need to be repaired, shipping has to be paid for,
external consultants might be needed, etc.
Other direct costs are contract penalties that have to be paid if an IT
outage causes a delay in delivery of a service, beyond a contractual
obligation.

Additional work hours are indirect costs that are attributed to any in-
cident. IT staff will put work into remedying any IT problems, and
that work has to be paid for by the company, in the end, by sales.
Instead, improvements to IT services could be worked upon.
But please do not make the error of considering any work that is done
in incident and problem management as additional work. There is a
base amount of work that has to be done in these areas in any case.
Of course, IT outages may result in additional work hours in other
areas of our company as well. Our delivery staff might need additional
work hours if the inventory system is down. Our office workers will
put up with evening work to get the work done that they could not
do when they were not able to access any files, addresses, or emails
during normal working hours. We can find examples for almost any
branch of our company, as almost all business processes depend on
some IT processes nowadays.

Known Estimated

Revenue Lost
revenue

Lost
work hours

Cost Direct
costs

Additional
work hours

Fig. 2.1. Business consequences of outages
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Lost work hours are indirect indicators for lost revenue. When 1000 of-
fice workers cannot work for 2 h because some server is down, or when
goods cannot be delivered, the sales that could have been made in that
time span might be lost forever. After all, these thousands of work
hours were good for some revenue, weren’t they?

Lost revenue may also be directly attributed to an IT outage. This is
the most important business consequence, but it is the hardest to
measure directly. It is possible to estimate it though. If our point of
sales systems is down, or if our company sells goods or services on the
Internet, any outage in these systems will cause customers to go to
competitors whose systems are still working. In the long term, many
customer-visible system outages will damage our reputation and will
result in loss of clients.

In the end, it is easier to specify costs than lost revenues as outage
consequences. Costs can be identified and counted; lost revenues can only
be estimated. Many experts try to make this up by taking lost work hours
as a replacement for lost revenues. Do not make this error yourself – quite
often, having no access to an IT service does not mean that the office staff
cannot work at all. Instead, they will do different work. Similarly, the
outage of a manufacturing line directly translates to lost revenue when
the line runs at full capacity. But when there is still reserve capacity,
the item will be manufactured and sold later instead. There will still be
lost revenue, but it cannot be equated to full production capacity and can
therefore only be estimated.

Of course, this also depends on the type of work. Call-center agents
or CAD designers cannot work without their IT systems; in case of longer
outages one might need to send them home. But these are occurring costs,
and not revenues. In the end, the metric of lost work hours is important
and interesting in its own right, but it is not identical to lost revenues, it
just provides input for an estimation.

IT staff costs for outages are exaggerated sometimes, especially when
all IT staff working hours are summed up as the cost of an incident. That
is partly the job of these staff members, after all. But if the IT staff spend
most of their time on sustainment work rather than on improving the IT
services to create new business value for the company, it might be time to
rethink our approach to implementation and operations. Many large com-
panies report that 70% of their IT staff work goes into sustainment, and
only 30% into development of new services – maybe it is time to consider
some of that 70% that has gone into incident and problem management
as additional costs that should be saved by better up-front work.

Do not kid yourself, this is not easy. As a colleague of mine recently
mentioned, “Highly available solutions are easy to set up, but difficult to
run over a long time.” Properly done, one needs to design maintainability
into the solution, and that costs additional setup money, i.e., one needs
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to spend short-term money to save more in the midterm or long term.
And as long as middle or upper management demands tighter IT budgets
now and caps IT investments, we will have to report multi-million-dollar
damages like the Comair disaster that was mentioned at the start of this
book, and we will have a vast amount of sustainment work not only for
legacy installations, but also for new systems that were not done right.

For a full leverage of the solutions and tools that are presented in this
book, one needs to establish an enterprise-class IT service. They are read-
ily realized in data centers of larger companies where the availability de-
mands are highest, potential losses are greatest, and the gain from avail-
ability improvements is best. But small and medium-sized businesses can
utilize the same concepts, on their own system. Most of the technology can
implemented in the server room of a small company as well as in a big
data center.

Knowledge of solutions and technology for high availability and dis-
aster recovery is also very valuable when one goes shopping for an IT
outsourcer. Then it is a requirement for our ability to negotiate good con-
tracts: it enables us to judge the proposals and proposed services properly.

2.1.1 Business Continuity as the Overall Goal

Most of the time, this book is about architectures and technology to
achieve continuous operation in spite of IT outages. We must not forget
that IT operations are a means to an end, and the actual objectives are
something different. In the end, we need to support business continuity.
Our whole business processes, not just the IT ones, must be anticipatory,
adaptive, and robust in the face of ever-occurring problems. For this, busi-
ness continuity is not just an aim, but instead becomes a tool that focuses
on business processes and works on steady process improvements.

IT has to deliver its share of those improvements. As far as business
processes depend on IT services, we have to manage their IT service con-
tinuity. As far as business processes do not utilize IT services, we have
to check if we can improve their performance, their robustness, or their
costs with IT support – again supplying IT service continuity for these
new services as well. This way we are able to manage both risks and op-
portunities. We can maintain continuous business operations and enable
growth.

Therefore, IT service continuity is the objective to work towards the
goal of business continuity, and high availability and disaster recovery
are two means to fulfill that objective.

2.1.2 Regulatory Compliance and Risk Management

The need for business continuity is not only justified on finance grounds.
Companies must comply with legal regulations; multinational companies
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or companies serving multinational markets have to comply with several
regulations from all over the world.

Most prominently, these are regulations for publicly traded compa-
nies, like the Sarbanes-Oxley Act (SOX) in the USA, or Basel II in Eu-
rope. There are other long-standing regulations, about workplace safety,
environmental issues, and security exchange regulations; regulations for
specific markets, like medical services and pharmacy and chemical prod-
ucts are also well known.

The need for compliance is not only created by public laws, but also
by business partners. For example, in Europe Basel II is actually only
binding for a few large businesses, in particular for banks. These large
companies pass on the consequences of the regulations to their business
associates. Banks demand Basel II compliance for good credit ratings;
therefore, many more companies have to comply than the law itself re-
quires.

Most compliance demands have two things in common: they demand
that some behavior is followed and documented, and that risk is managed
proactively. Risk management of business processes focuses on financial
operations first, but IT services are not far behind owing to their impor-
tance for most business processes. Ensuring availability of IT services,
both short and long term, is therefore important for regulatory compli-
ance as well.

Well-run IT shops have realized this already, and have taken proactive
steps to have well-documented processes for their service delivery and
management. Beyond a single company’s processes, the IT Infrastructure
Library (ITIL) provides a framework that deals with the matter at hand,
with processes for availability management and continuity management;
these processes are the base for the following chapters. Other ITIL areas
cover processes for proper operation of IT services, i.e., for service man-
agement, and will be presented in Appendix C.

2.2 System and Outage Categorization

The importance of IT services and IT systems is directly related to their
business relevance. It depends on the revenue, which depends on their
functionality, or on the amount of damage in case of an outage, or if there
are regulations that demand their functionality. Since the importance of
service varies a lot, the importance of their failures and service outage
are quite different too. For planning and communication with different
stakeholders – like management, clients, technicians, and others – the
categorization of Table 2.1 on the following page has proven valuable.
More fine-grained categorization is actually seldom needed; such catego-
rization is overdesigned and not maintainable in usual business environ-
ments.
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Table 2.1. System and outage categories. This book focuses on the gray cells

Category Max. minor outage Max. major outage

Continuous availability 1 min 2 h
Mission-critical 10 min 8 h
Business-important 1 business hour 3 days
Business-foundation 1 business day 1 week
Business-edge > 1 week > 1 month

For each system, we have to answer five key questions:

1. What failures should be handled transparently, where an outage must
not occur? Against such failures we need fault protection.

2. How long may a short-term interruption be that happens once a day,
once a week, or once a month? Such interruptions are called minor
outages.

3. How long may a long-term interruption be that happens very seldom
and is related to serious damage to the IT system? For instance, when
will this cause a big business impact, also called a major outage or
disaster?

4. How much data may be lost during a major outage?
5. What failures are deemed so improbable that they will not be handled,

or what failures are beyond the scope of a project?

This book is concerned with solutions for the categories mission-
critical, business-important, and business-foundation. Continuous avail-
ability is covered only in passing, and we look at the business edge only
for disaster recovery. The former would need a book of its own, and the
latter is not connected to high availability.

� Fault Protection

The first question asks for errors that must not be noticed by end users.
Fault protection is the method use so that component failures do not lead
to service outages at all. It provides continuous operation of a service in
spite of those failure scenarios.

Only for a few components is fault protection available at reasonable
rates. These are mostly hardware components, e.g., disk drives, power
supplies, and I/O cards. This category is important nevertheless, as fail-
ures in those components happen often enough to make fault protection
a standard solution.

For other components, especially for software, fault protection is very
expensive and is used only in designs for continuous availability; we will
come back to that later.
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� Minor Outages

The second question intends to establish requirements for minor outages.
We should not take the simple road and answer with the time span how
long it takes until users cannot work anymore. Instead, we ask about
the point where damage to our business is significant. Frankly, there are
situations where some users not working is not identical to significant
business damage – and small losses are not enough to justify the effort to
establish a high-availability solution.

In this book, we are not interested in all kinds of minor outages for
all kind of systems. Table 2.1 on the preceding page emphasizes our focus
with a gray background – we are neither interested in continuous avail-
ability with its extremely high demands (more on that later) nor are we
interested in the business edge where systems are just repaired, but no
precautions are necessary to assure availability.

In fact, the techniques that are presented in this book are often not
even necessary for outages in the business-foundation category. For many
systems in that category, one can recover from an outage by having a
support contract that assures repair of the system in the given time frame
and this is not the type of technology presented in this book. But there are
business-foundation systems that cannot be recovered in the given time
period by repair actions alone; and then we need the high availability
methods and technology.

� Major Outages

The third question intends to establish requirements for major outages.
It anticipates the definition of disaster that we will flesh out in Sect. 2.4
on p. 26 and in Chap. 10. In this book, every major outage is a disaster,
and not only a catastrophe in the physical environment, like a hurricane,
a fire, or a bomb. Instead it is defined by the business-related damage
that an event inflicts and where disaster-recovery actions are necessary
to recover from it. After all, if some administrator deletes all our data, this
human error is a disaster for our company. And then we need a prepared
plan to handle this disaster, just like we need it after a hurricane.

The fourth question is only concerned with data loss in the disaster
case. We assume that business data exists “in flight” and in a finalized
form. That is, business data is acquired during a business process and
entered into an IT system. As long as the process is not finished, the data
is in an ephemeral state and there is no great business damage if the
process is aborted and the data must be entered anew. When the process
has been finished, the data is persistent and then they must not be lost
because the user would not know that the process must be repeated.

Of course, there is more to it than just aborts of end-user sessions.
When some batch processing of data is aborted in the midst of a long
run, the application must be able to handle that and restart the process-
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ing. This must be done without repeating already finished actions, and
no pending action must be forgotten. If we think about financial transac-
tions, the objective behind such demands becomes obvious.

It is no coincidence that this concurs with the transaction principle
that underlies most commercial IT applications and that is supported by
many applications and middleware software products: a persistent state
is important, an ephemeral state can be thrown away if necessary.

That end-user dialogs may be aborted without too much harm is a
common-case assumption that might not be true in all circumstances.
If we design a very busy business-to-customer Internet commerce site,
aborting the goods collection and order process for thousands of potential
customers might create relevant business damage as well, as many of
those customers will cancel the order completely and will not come back
owing to sheer frustration with our system. This example case shows that
we have to think for ourselves about the constraints we use for minor and
major outages for our use cases, and what consequences these outages
will have.

� Out of Scope

The fifth question acknowledges that all IT services are designed and
implemented in a business context. A risk analysis for some failure sce-
narios may decide that these failures shall not be handled, e.g., because
these scenarios cause other failures that make the IT services not needed
anymore. Or IT development plans or budget concerns may call for a pro-
ject that realizes protection against some failure scenarios now and will
look at the other scenarios later.

Actually, the latter is often the case: it is common to have a project
establish protection against minor outages first and disregard major out-
age handling, which will be tackled in a later project. For the first project,
all failure scenarios that lead to major outages will be out of scope – even
though they are not from the business point of view, they will just be
handled later.

The problem with this category is that it is much too often neglected
and ignored. There are failure scenarios like fire at the same time in both
primary and backup data centers – it is sensible to ignore them because
risk mitigation would be too expensive. But we cannot lump all out-of-
scope failure scenarios in this “obvious” category. Some decisions about
failure scenarios must be made consciously, e.g., about protection against
sabotage – is this out of scope, is this so seldom and improbable that it
may lead to a major outage, or must this only lead to a minor outage?

It is not realistic to assume that one gets a 100% solution that either
protects against or recovers from all failures. Economically, the quest for
such a solution does not make sense, and also it is not possible – what
about the failure scenario when all systems, including all backup systems
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at all remote locations, have outages at the same time? If we add another
set of backup systems, what happens if they have the same outage at the
same time? In the end, it boils down to our having to analyze carefully
the risks for our IT services and IT environment and creating a good
mitigation strategy, accepting existing residual risks.

Fine Points of Categorization

We do not need precise answers for our questions. To say that one system
can be out of order for 2 h, and another for 3 h, is overspecification and
is not of much practical use. Either one can take the thresholds from
Table 2.1 on p. 18 or one chooses one’s own thresholds.

Still, there are a few fine points in that table that need further elabo-
ration.

• First of all, the outage times are per incident. For minor outage re-
quirements, we will need additional values that will be discussed in
Sect. 2.5 – these additional values will spell out the allowed cumu-
lated outage times over a certain time span, e.g., over a month or a
year.

• It must be emphasized that these are maximum outage times. This
means that they are limits for the respective category. For example,
the entries in that table demand that major outages for mission criti-
cal systems must not last longer than 3 days. Everything above 10 min
is considered a major outage.

• The time spans are not just absolute times, they take into account if
something happens during or outside business hours. Very few of our
IT systems need to run all the time; often we were able to specify busi-
ness hours where availability requirements are much more stringent
than for the wee hours.

• There are two ways to approach this table. One might have a vague
notion that some systems are very important, more important, or less
important for one’s company. Analysis of the situation helps to asso-
ciate outage limits with that intuitive categorization. On the other
hand, one might have several SLAs already that name such limits,
then the table helps to define good categories.

Continuous Availability

Continuous operation is the ability of a system to provide nonstop, unin-
terrupted service to its users. Continuous availability is a special subset
of high availability that combines it with continuous operation. The sys-
tem must not have outages and service delivery must be ongoing, without
interruptions.
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This goal is very hard to achieve, as computer components – be
they hardware or software – are neither error-free nor maintenance-free;
therefore a system that needs continuous availability has to be fault-
tolerant. Fault tolerance is often available for hardware components, but
very seldom for software. It means that a failure does not become visible
to the user, but is covered by internal protection mechanisms.

In addition, the need to realize maintenance activities in a running
system is another differentiator between continuous availability and
other categories of high availability. In such installations, one has to cope
with installations that run multiple versions of the same software at the
same time and get updated in phases.

Continuous availability concentrates on protection against failures,
and discards user-visible recovery from failures as not acceptable. It is
very rarely needed. In most situations, user sessions can be aborted and
repeated without harm to the business or to people. Only in special appli-
cation areas like airplane fly-by-wire controllers or nuclear reactor mon-
itoring do we find the need for it; therefore, methods to achieve continu-
ous availability will not be covered in this book, as we are concerned with
classic enterprise applications.

But since this book is about high availability and disaster recovery, it
is time to be more precise with our terms. What do they mean after all?

2.3 High Availability – Handling Minor Outages

High availability is one of those terms that everybody seems to know
what it is but for which it is hard to find a widely accepted and precise
definition. For the realm of this book, we use the following:

High availability is the characteristic of a system to
protect against or recover from minor outages in a short

time frame with largely automated means.

It does not matter if the failures that cause minor outages are in the
systems themselves, or in the environment, or are the result of human
errors. In the case of such a failure, highly available systems have the
option to abort current sessions, i.e., the user will notice the failure. But
they are expected to make the service available again, in a short time
frame.

It is important that our definition of high availability brings together
three factors that must all be considered before we can speak of high
availability:

1. Outage categorization: This is a precondition that tells us if we are
in that problem and solution domain at all. We need to know potential
failure scenarios for a service and the minor outage requirements for
them. Only then can we start to talk about high availability.



2.3 High Availability – Handling Minor Outages 23

2. System categorization: That tells us about requirements for max-
imum outage times. Only when those times are short do we speak
of high availability. When a system can be down for a whole week,
high availability is not involved. Typical high-availability system cat-
egories have a gray background in Table 2.1 on p. 18.

3. Automated protection or recovery: Technology and solution ap-
proaches also have an influence if we need high availability. The same
requirement may be resolved for two different services in two differ-
ent ways: one needs high-availability technology, the other does not.
We will expand on this point below.

Minor outages have in common that one component or only a few com-
ponents have failed and that these specific components are not essential
to deliver the service – they are by design not a single point of failure.
Most often, being nonessential is achieved by introducing redundancy for
these components, by supplying several instances of the same component
where one can fail and the other continues to operate. High-availability
design ensures that as few resources as possible are necessary as single
component instances.

We need to differentiate generic high availability from continuous
availability which implies nonstop, uninterrupted service, as explained
in the previous section. Continuous availability is a subset of high avail-
ability where every component failure is protected against, and no after-
failure recovery takes place. As such, it is at the high end of a range that
is described as high availability. But in reality, continuous availability is
needed very, very seldom and is implemented even more seldom. This spe-
cial system category therefore is not prominent in this book. While fault
protection will be covered where it is mature and wide-spread technology,
we will focus on fault recovery most of the time.

It was mentioned already that technology matters, that should be
elaborated. Let us assume that we have a service that belongs to the busi-
ness foundation and where the minor outage requirement is at maximum
eight business hours per year. Often we can add the night for repairs, then
there are plenty of services that can be restored on a spare machine from
backup and where the service is soon available again. This would fulfill
the requirements of outage and system categorization, but is not com-
monly regarded as high availability. To capture that understanding, we
introduced the demand that recovery must be done by automated means,
without or with little manual intervention.

On the other hand, the same requirement for a different service might
need a different solution. When our data is so large that it cannot be
restored until the next business day, we need to take precautions that the
data is replicated in an automated way and also made available again
in an automated way. Disk mirroring is a typical precaution for that. Or
that recovery on the spare system is not done by manual backup but by
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automated procedures. With such solutions in place we already start to
speak about high availability, though with restricted functionality.

Therefore the realm of high availability cannot be described more pre-
cisely. There is no undisputed availability limit where we can start to
speak of a high-availability system. Also, there is no undisputed limit
where one has to start using the approaches that are presented in this
book. Nevertheless, it has to be said that usually high availability means
availability numbers of 99.9%, measured yearly, and upwards.

Section 2.5 has more to say about availability measurements. But be-
fore we handle the measurement, we should consider the definition of
availability. We will also look at definitions of the related terms reliabil-
ity and serviceability. Together, they make up the acronym RAS that is
used to describe the quality of IT systems. Reliability and serviceability
contribute towards higher availability of a system.

Please note that there are several definitions of reliability and service-
ability – we use one which best fits the purpose of this book.

2.3.1 Availability

Availability is the measure of how often or how long a service or a system
component is available for use. Outage of a component is relevant for
service availability if that component is needed to provide the service. For
example, for a network service, outage of the sole network interface card
terminates the availability, whereas for a local service on the computer it
does not.

Availability also means features which help the system to stay oper-
ational even if failures occur. For example, mirroring of disks improves
availability.

The base availability measurement is the ratio of uptime to total
elapsed time:

availability= uptime
uptime+downtime

.

The elapsed time includes scheduled as well as unscheduled downtime.
A somewhat subtle point is if the elapsed time is meant as wall-clock
time or service time (cf., Fig. 2.3 on p. 30). Both definitions are useful, but
we need to be precise when we use the term. We use the wall-clock time,
which is best for highly available systems. It has the effect that regular,
preventive maintenance activities decrease availability.

The same availability can be expressed in absolute numbers (239 of
240 h last month) or as a percentage (99.6% last month); Section 2.5 on
p. 29 presents quantification of availability in detail. It can also be ex-
pressed in user-related terms where the time span is multiplied with the
number of users. For example, with our examples and 1000 users of this
system, this would be “239 000 of 240 000 work hours” – which gives a
better indication about the seriousness of that 1-h downtime.
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This is the actual availability of a system that can be measured for
its existence. For identical systems, experience with old systems can be
reused as a planning guide. Otherwise, if one knows the mean time be-
tween failures (MTBF) and the mean time to repair (MTTR), one can ex-
press planned or expected availability as

availability= MTBF
MTBF+MTTR

.

This formula also shows clearly how one can influence availability most
easily: decrease the MTTR. Shortening the repair time to one tenth has
the same effect as a tenfold increase in the MTBF:

10×MTBF
10×MTBF+MTTR

= MTBF
MTBF+MTTR/10

.

But it is usually much more expensive, sometimes impossible, to increase
the MTBF by such high factors, whereas repair time can be improved by
better processes, spare parts on site, etc.

2.3.2 Reliability

Reliability is a measurement of fault avoidance. It is the probability that
a system is still working at time t+1 when it worked at time t. A similar
definition is the probability that a system will be available over a time
interval T.

Reliability does not measure planned or unplanned downtimes; MTTR
values do not influence reliability.

Reliability is often expressed as the MTBF. Make yourself aware that
this is statistics, the science of big numbers. To really use the statistics,
one needs to have a statistical sample. When we run thousands of disks,
the MTBF for one disk becomes meaningful. But for computer systems,
the MTBF has only a restricted value: you want to know the reliability of
your system, not of a class of systems. Appendix A addresses reliability in
detail.

Reliability features help to prevent and detect failures. The latter is
very important, even if it is often ignored. The worst behavior of a system
is to continue after a failure and create wrong results or corrupt data!

2.3.3 Serviceability

Serviceability is a measurement that expresses how easily a system is
serviced or repaired. For example, a system with modular, hot-swappable
components would have a good level of serviceability. (But note that im-
plementing hot-swappable components contributes to all three qualities,
not just serviceability.)
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It can be expressed as the inverse amount of maintenance time and
number of crashes over the complete life span of a system. For example,
1.5-h service in 720-h elapsed time (720 h is roughly 1 month). As such, it
formulates how much sustainment work must be put into a system and
how long one needs to get it up when it has crashed. Like availability,
there are two measurements that are of interest: planned and actual ser-
viceability.

Planned serviceability is a requirement that goes into the architec-
ture as a design objective. A good architect will take Murphy’s Law into
account and use technology to make the actual serviceability much lower
than the planned serviceability. For example, the planned serviceability
of the same system might be 9-h planned service in 720-h elapsed time
(i.e., around 2-h planned service time per week).

Good serviceability is directly coupled to good patch and deployment
management. When upgrade processes and procedures are well thought
out and do not need much manual intervention, we will have a lower
planned service time and thus higher serviceability. Especially patch
management has recently been given the attention that it deserved for
a long time and is now commonly seen as an important activity as part of
one’s release management process.

Serviceability features help to identify failure causes, system diag-
nosis to detect problems before failures occur, simplify repair activities,
and speed them up. A call-home feature and hot-swappable components
are examples of serviceability features. Good serviceability increases both
availability and reliability.

2.4 Disaster Recovery – Handling Major Outages

Disaster recovery is even harder to define than high availability. Tradi-
tionally, disaster recovery describes the process to survive catastrophes in
the physical environment: fires, floods, hurricanes, earthquakes, terrorist
attacks. While this is for good journalistic stories, it is not sufficient for
IT planning because it does not cover all failure scenarios that describe
severe damage to a company’s business.

Therefore, current publications often emphasize the term service con-
tinuity and use that for coverage of all kinds of outages. In this book,
disaster recovery is still used, but with an enhanced meaning that covers
complete service continuity beyond high availability.

Disaster recovery is the ability to continue with services
in the case of major outages, often with reduced

capabilities or performance. Disaster-recovery solutions
typically involve manual activities.
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Disaster recovery handles the disaster when either a single point of
failure is the defect or when many components are damaged and the
whole system is rendered unfunctional. Like high availability, it needs
outage and system categorization as preconditions to describe the prob-
lem domain that it covers.

It handles the case when operations cannot be resumed on the same
system or at the same site. Instead, a replacement or backup system is
activated and operations continue from there. This backup system may be
on the same site as the primary system, but is usually located at another
place. Since this is the reaction to a major outage which is expected to
happen seldom, disaster recovery often restores only restricted resources,
and thus restricted service levels, to save money. Continuation of service
also does not happen instantly, but will happen after some outage time,
even in the restricted form. Full functionality is restored only later on in
the process.

This book considers major outage and disaster as synonyms, i.e., they
are the same in our context. But the definition of what constitutes a ma-
jor outage or a disaster is obviously highly context dependent, with lots of
gray areas. While destruction of a data center by an earthquake is clearly
a disaster in the eyes of everybody, deletion of data by system administra-
tors is a disaster for most companies, and system outages of a few hours
may be a disaster for manufacturing companies when production depends
on them. On the other hand, many clerical tasks can survive quite a few
hours without computers. This is just as well, as disaster recovery is not
a one-size-fits-all product either. Since different businesses have different
notions of what a disaster is, recovery processes must be adapted as well.

Therefore, for each IT system, we need to define the situation of a dis-
aster. For that, we utilize the system and outage categorization from
Sect. 2.2 on p. 17 and introduce means to measure and describe the im-
pact of major outages. The classification of major outage and associated
data loss is used to describe the objectives of disaster recovery and these
are so important that they have their own acronyms:

Recovery time objective (RTO): The time needed until the service is
usable again after a major outage.

Recovery point objective (RPO): The point in time from which data
will be restored to be usable. In disaster cases, often some part of
work is lost.

But please note that we should use these acronyms only in the context of
disaster recovery.1

Table 2.2 on the following page repeats the maximum times for major
outages and associates them with the maximum data loss in that outage

1 In particular, outside of disaster recovery, RTO most often refers to the Re-
transmit Timeout Interval (an essential part of TCP).
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Table 2.2. Major outages and data loss

Category Recovery time Recovery point
objective objective

(max. outage) (max. data loss)

Mission-critical 8 h 2 h
Business-important 3 days 1 day
Business-foundation 1 week 1 day
Business-edge > 1 month 1 week

category. As with the outage time, the important message of this table
is not the actual values – they might differ from company to company,
according to sensible business objectives. But one thing remains: we do
not determine these numbers for every application and every IT service
anew. We create sensible categories for our company, and then put IT ser-
vices into these outage categories. This helps to select solution patterns
for high availability and disaster recovery that may be reused for several
IT services, where project synergies are put into place.

Declaring a disaster and migrating to the backup system has grave
consequences. This is an expensive and sometimes risky operation, and
migrating back to the primary system will be expensive again. Data loss
might happen, in the realm of our RPO. Therefore one has to be very
cautious about disaster declaration and triggering disaster recovery.

While high availability has a strong emphasis on automated pro-
tection and recovery procedures, disaster recovery takes a different ap-
proach. Here we face very uncertain and unusual circumstances and have
to handle a wide variety of failures that happen seldom – if this were not
the case, we would not have major outages. In such cases, it is better
to rely on human intelligence and good processes. The processes provide
guidance so that one does not forget actions, but the actions are done
by IT staff that have the flexibility to react manually to uncommon sit-
uations. That is, disaster recovery gives room for “that’s strange – let’s
check it first” situations, by design.

Disaster recovery is always associated with a bigger risk than high-
availability precautions. It is rarely utilized, and is usually tested infre-
quently. That is not because it is not needed, but because the effort is not
made since major outages happen so seldom. While the damage is often
high, the probability is very low. Owing to the reduced testing, nonnegli-
gible chances exist that some problems might occur during migration to
the backup system. Proper preparation ensures that these are only minor
issues that our IT staff will be able to handle on the fly, but nevertheless
one must not ignore the inherent risks.
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2.5 Quantifying Availability: 99.9. . . % and Reality

Another way to quantify the importance of our systems, and to charac-
terize them, is availability percentages. This quantification appears in
many contracts or outsourcing offerings, i.e., a WWW server hoster may
promise 99.9% availability in its marketing material.

In contracts, such numbers are most often listed in the section Service
Level Agreement (SLA). We will learn more about them in Sect. 2.6.

Such percentage quantifications are easy to write down and appear
to condense the whole complexity into one single number. It also makes
for great catchphrases, such as one can talk about “three nines” (99.9%),
“four nines” (99.99%), and “five nines” (99.999%), each denoting higher
availability classifications. Easy, isn’t it? And in fact, it is really a good
communication method – especially in executive summaries – but only if
we use this single number during planning with very great care.

As the saying goes, the devil is in the small print. Always when one
hears somebody talking of “percentages,” one needs to ask “of what?”
In theory, this percentage value is expressed over the whole time, 24 h
a day, 365 days a year. This mode of continuous operation is commonly
called 24×7: here, n×m means n hours of operations per day, and m days
per week. Now we can determine combined maximum outage times over
operational prime hours, and we can summarize them per month or per
year.

When we negotiate SLAs, we should strive for absolute numbers in
them. For all contract partners, it is clear what a summarized maximum
of n minutes per month or x business hours per year means, whereas
percentages must be translated first by each contract partner into such
numbers, and different translations can lead to misunderstandings. We
have to give absolute numbers anyhow in other parts of the SLA, e.g., in
the specification of a maximum incident duration – then we can unify the
way availability requirements in SLAs are done.

Table 2.3 on the next page does just so and illustrates different outage
times for the same percentage value, differentiated by measurement in-
tervals. The table also has four columns for the common situation where
we can afford service times, i.e., do not work on weekends, or just have to
support usual office hours (at maximum, from 06:00 to 20:00).

The numbers that are important for practical agreements are empha-
sized by a gray background. For example, round-the-clock operations for
an Internet commerce site and a 99.99% yearly 24×7 SLA equates to a
maximum outage of almost 1 h, which is reasonable if we do not plan
eBay operations. Another possibility might by 99.8% with monthly mea-
surement (i.e., 1.5-h downtime), whereas a 99.8% SLA with yearly mea-
surement means 0.75 days of maximum total downtime, which might be
too much.
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Table 2.3. Maximum outage times as interpretation of availability percentages
for different service level agreement (SLA) measurement scenarios. An addi-
tional 1 day per week outage time may be added to the 24 × 6columns (i.e.,
6240 min/month or 74 880 min/year) and more than 4 days per week may be
added to the 14×5columns (i.e., 25 530 min/month or 306 360 min/year). Rele-
vant numbers are emphasized by a gray background, and avoid other scenarios
in the context of high availability

24×7 24×6 14×5SLA (%)
Monthly Yearly Monthly Yearly Monthly Yearly

99.0 7.3h 3.7days 6.3h 3.1days 3.0h 1.5days
99.5 3.7h 1.8days 3.1h 1.6days 1.5h 18.3h
99.8 1.5h 17.5h 1.3h 15.0h 36.6min 7.3h
99.9 43.8min 8.8h 37.6min 7.5h 18.3min 3.7h
99.99 4.4min 52.6min 3.8min 45.1min 1.8min 21.9min
99.999 26.3s 5.3min 22.6s 4.5min 11.0s 2.2min
99.9997 7.9s 1.6min 6.8s 1.4min 3.3s 39.4s

Do not underestimate these downtimes. A maximum of 1-h downtime
per year is very hard to achieve for 24×7 operations because one must not
have any downtimes for changes, or such downtimes must be included in
that hour!

As a contrast, 99.99% availability during business hours (measured
yearly, 14× 5 coverage) is often suitable for a finance back office SAP
installation – that demands a maximum outage time of approximately
20 min per year, but gives every day 10 h and additionally two full days
per week for changes with planned downtimes. Restricting availability
SLAs to business hours always means that the allowed maximum out-
age times become smaller than for continuous operations (since the total
number of hours is also smaller), but it also means that one gains lots of
freedom to plan operational changes. With them, more stringent require-
ments for business hours are much easier to fulfill.

� Other Ways to Compute Outage Times and Availability

Still, those high numbers are awfully hard to get by. When we have a look
at 14×5 operations with 99.999% availability and yearly measurement,
we get a maximum outage time of 2 min per year. Most technologies are
not even able to detect failures and recover from them in that time span.
Nevertheless those numbers are marked as relevant in the table, and
even higher availability numbers like 99.9997% appear in practice. How
are they computed then?

Well, what we did not capture in the table was that very high avail-
ability numbers sometimes are not even sensible per system and year.
Enterprise-class computer systems are actually quite stable today and it
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is not uncommon to have uptimes of more than 1 year, without any out-
age. For such cases, where business owners expect less than one outage
per system per year, the previous availability numbers are not usable and
other ways to make measurements must be chosen.

In such a situation, one possibility is to distribute outages over a class
of systems. For example, if we have five identical systems in five locations
that provide a service, a possibility is to define an SLA that shares outage
times over all systems. Then, a 5-min outage of one system would count
as only 1 min towards the availability SLA. While this sounds impracti-
cal at first, there might be good business sense behind it. As an exam-
ple, if one has five plants and respective computer systems that support
manufacturing activities at each plant, the business owner might only
be interested in the total outage of any plant, and not of a specific one.
But if SLAs are made per computer system, it can be sensible to sum up
availability SLAs per system to reach the overall availability goal.

Another possibility is to choose even longer availability measure-
ments. If systems are expected to work longer than 1 year without any
outage, this makes sense again. For example, a router might have an
SLA of 99.9997% over 3 years; that makes 4.8-min maximum outage time
– which can be realized with top-of-the-line equipment.

� More Availability Metrics

But maximum outage time in a given time period is not the only metric
that is used to describe availability. For the business owner, it is not only
of interest what the accumulated numbers are, single incidents are of
interest as well.

So we introduce two other important metrics: outage frequencies and
outage duration. The number of outages is of interest for the business
owner; maybe 100 outages of 1 min are easier to endure and mainly a
nuisance, but one outage of 100 min is already too much. After all, short
outages are often not noticed by many users, they just wait a bit or they
have to repeat their last action, whereas an outage of 100 min is probably
noticed by all users and may impact our business. Other installations can
handle one large outage of 1 h per month, but do not want to handle two
short outages per day.

2.6 Service Level Agreements

There is the tendency to assert that all systems must be online and us-
able all the time in our new networked and interconnected world. The
usual reasons are overseas contractors or clients, e-business, etc. Be ad-
vised that it is sensible to question such assertions and the associated
costs. Business owners are sometimes inclined to raise the importance of
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Functionality

0% 100%
gap may be large

due to cost

reduction objectives

Fig. 2.2. Service level agreements (SLAs) and user notion of availability

their processes by asserting round-the-clock availability although it is not
necessary from the overall business viewpoint.

SLAs are the means to specify requirements for the delivery of IT ser-
vices. They are a contract between the business owner and the IT de-
partment. If the IT services in question are outsourced, this is a real le-
gal contract between two companies. But also in the common case that
the business owner and the IT department are from the same company,
a properly written SLA is an advantage for both parties – the business
owner knows what he or she gets and the IT department knows what it
must deliver.

With all this talk about measurement of availability, there must be
a reality check. For our end users, “availability” is often in the eye of
the beholder. If we have a scale from not working to fully working, SLAs
determine the limit where we must intervene. But for our users, service
will probably deteriorate earlier. Figure 2.2 illustrates that scale. It is a
matter of company policy if the users notion of “service is still usable and
thus available” is consistent with SLAs.

Often, cost-reduction objectives make them inconsistent – when the
SLA limit has not yet been reached, but users complain about unavailable
applications. There is no silver bullet for tackling this problem, but we
should make sure that our installations do not always wait for SLA limits
to be reached until corrective actions are taken. Instead, we should take
the user experience into account as well.
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So, what are the agreements that should be specified in an SLA? Well,
one needs to specify different SLAs for minor and major outages. The
former will be fulfilled with high availability, the latter with disaster re-
covery. The specifications should spell out the following technical require-
ments:

1. Minor outages are caused by errors in ongoing operations. Specify:
• Summarized maximum outage time over a defined time period
• Maximum outage frequency over a defined time period, i.e., how

often an may outage occur in a given time frame, independently of
its duration

• Maximum outage time per incident
2. Major outages happen very rarely and are situations that do not fall

under the minor outage SLAs anymore. Nevertheless, we also want
SLAs for them:
• RTO, the time until the most important part of the IT service is

usable again
• RPO, the maximum data loss that may happen
• Service recovery time, the time until full operations with all pro-

tection and redundancies in place are available again

It is important to separate SLAs for minor and major outages. If mea-
surement and related contracts combined both, system designs would be-
come too complicated and not realistic as it would be too expensive for the
delivered functionality.

Maximum minor outage time can be specified as a percentage or as
a specific duration. If possible, specific durations should be used as de-
scriptions. Usage of percentages has the disadvantage that often the mea-
surement time span is forgotten.

It might be that there are variants in those agreements; very often
one number does not fit the business requirements properly. For exam-
ple, probably there will be different service time recovery requirements
for different outage scenarios – a physical destruction of a complete data
center has a different full recovery time than the destruction of a set of
computers that can be replaced relatively soon.

To specify those agreements, SLAs need also to include factual and
process information. An example of factual information is how to measure
the availability time period, i.e., if it is 24×7, or if it is not, what are the
business hours, what is done on public holidays, etc.

Process information will make up the vast bulk of SLAs, and to list
them all goes beyond the scope of this book. Nevertheless, we want to
emphasize four descriptions that must be in an SLA, otherwise it cannot
be fulfilled realistically.

1. The escalation process must be described. It must be formulated in
a straight way after which time periods which kind of escalation is
requested.
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2. Disaster declaration is a process that is elementary and must not
be skipped in an SLA formulation. It must be crystal clear how a ma-
jor outage is detected and declared, to be able to start disaster re-
covery. Without such requirements, any disaster-recovery process is
doomed to fail.

3. Roles and responsibilities must be spelled out, in particular the
separation of work between department of the business owner and
the IT department.

4. Reporting is often forgotten, but it is extremely important to specify
this as well. What shall be reported, how often, and to whom are the
questions that must be answered by SLAs.

If we follow these high-level guidelines, we have a good chance to get
SLAs that actually mean something and help to define the expected in-
terface to IT services clearly.

2.7 Basic Approach: Robustness and Redundancy

Our interest is the creation of highly available systems and to handle
disasters, to continue eventually with providing the IT service. To do that
we need to:

• Analyze our existing systems, their environment, and their usage
• Identify potential failure scenarios
• Design the future systems to continue operations in spite of these fail-

ures

On a very high abstraction level, our approach has two tiers that are
simple to explain:

1. Robustness: We will minimize the potential for failures.
2. Redundancy: We will establish resources to continue operations

when failures occur.

The first approach stresses robustness and simplicity. We will use a de-
sign that is as simple as possible and as complex as needed. If a feature
is not really needed, it is shunned without mercy; even though some tool
marketing specialist might have proposed it as the best thing since sliced
bread. Let KISS be our guiding principle for system design – Keep It Sim-
ple and Straightforward.2

The second approach identifies single points of failure and adds re-
dundancy to protect against or recover from failures of components.

2 This is the modern euphemistic expansion. In the 1960s, when the term KISS
was used heavily in the Apollo project, those down-to-earth engineers expanded
that acronym to “Keep It Simple, Stupid.”
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Table 2.4. Categorization of components and failures

Component category Typical failure

User environment Data deletion or corruption
Administration environment Data deletion or corruption
Application Crashes, data corruption
Middleware Crashes, memory leaks
(Network) infrastructure Connection loss
Operating system Crash, device driver errors
Hardware Device defect
Physical environment Power outage, fire, floods

These approaches are not independent; in fact, they conflict often
enough. Adding redundancy makes a system more complex and usually
reduces its robustness. That is because the redundant component intro-
duces new dependencies; it must be operated, it can fail as well, its fail-
ure can propagate to other components, etc. It is a matter of judgment to
balance these issues. For example, while hot-spare disks surely increase
complexity, their gain in fault tolerance increase is tremendous and does
well to offset any complexity questions.

Therefore, we need to take great care to design our redundancy and
use it only where it makes sense. This needs judgment that comes with
experience – this book will help you on your road to gather that experi-
ence, but it cannot substitute it. Enterprise-class system design has still
many aspects of an art, and is not an engineering discipline.

But where do we start with the analysis of potential failures? As guid-
ance, we utilize a scheme of component categories where failure may oc-
cur, from the physical environment to hardware to the user environment.
For each component, potential failure causes exist that can be analyzed
in turn. Table 2.4 presents those categories and typical failures. We re-
frain from exact category definitions at the moment, e.g., the difference
between middleware and infrastructure will not be described here, but
the respective chapters will provide the descriptions.

Components do not exist in an isolated space. Most of them depend in
their functionality on another component. On a higher abstraction level,
we can express that as a dependency between the categories. One can
express such component relationships by dependency diagrams. These
diagrams are not arbitrary graphs, instead they show a hierarchy of cat-
egories, where higher layers depend on lower layers. Concerning that
dependency relation, the table lists higher categories above lower cate-
gories. The user environment depends on functional applications, they
depend on middleware, which depend on infrastructure and operating
systems, and so on.
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Roughly speaking, these categories form a kind of layered stack struc-
ture – but we must take this layer idea only as an illustrative but coarse
approximation that is suitable when we want to paint the picture with a
broad brush. For one, this is not a strictly hierarchical stack; applications
use middleware, infrastructure, and operating systems, administrators
work on and with several components too. Second, (network) infrastruc-
ture services like routers, Domain Name Service (DNS), or license servers
do not fit well into the stack picture either since they are usually deployed
and planned independently.

Such a classification is extremely valuable, and it must not be under-
estimated. Table 2.5 on the facing page presents a list of failure scenarios
that came out of a root cause analysis of previous outages; such a list is
a good start. This list is presented here to illustrate the breadth that the
spectrum of failure scenarios can take, from obvious failures like hard-
ware failures to nonobvious scenarios like hanging Java virtual machines
that are often forgotten.

But such a list has also too many ad hoc scenarios and does not struc-
ture any discussion about them. By making these scenarios more generic
and placing them into the layered classification of Table 2.4, we further
our work substantially. (Section 4.2.1 on p. 79 will present such a catego-
rized list.)

We also need to select appropriate failure scenarios. As we have seen
already, planning high availability and disaster recovery occurs in a busi-
ness context. That business context also determines, or at least influ-
ences, the project’s scope. By that scope, some scenarios might not be seen
as relevant, maybe they will be handled in a later project phase, or not at
all and their risk will endure.

We will have to select between several alternative solutions. This se-
lection will be influenced by many factors, both hard ones and soft ones.
The “hard factors” are those that can be easily counted and measured,
“soft factors” are experience and judgment calls that can be specified but
where measurement becomes difficult.

Soft factors are mostly human-related. Familiarity of our IT staff
with certain solutions must certainly be considered. Setting up a high-
availability system for a mission-critical server is no place to try out some-
thing completely new. On the other hand, most IT professionals are eager
to learn something new, and a project for a crucial or an important server
might very well be the place to try a variation or something completely
new, to gain new knowledge and new insights. Other soft factors are ven-
dor relationship – if we have a vendor that provides an excellent service,
it makes good business sense to go with that vendor as long as it does not
result in a vendor lock-in situation.

All those factors will have to be revisited and reevaluated regularly.
Changing requirements, changing technology, and new possibilities all
influence the decision process. Some time down the road, a formerly well
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Table 2.5. Brainstorming result of failure scenarios

Corrupt database index Denial of service attack on URL
Frozen process could not be killed

(zombie)
Disk full (runaway process consumes

all disk space)
LUN not accessible Loss of shared network infrastructure
Last change generated run time issue

not detected during preproduction
testing

Synchronization to standby database
hung, stopped primary database

Memory leak in application
consuming available main memory

Flood in jobs caused system to stop

Memory failure Disk failure could not be recovered by
storage system

NIC failure, failover failed DISK adapter failure, redundancy did
not work

Switch interface failure Storage switch interface failure
Network link failure not detected, no

failover
Corrupt main memory caused system

crash
Corrupt database index Hung Java virtual machines
Corrupt data in database table

caused application crash
Loss of access to primary LDAP

server
Loss of network in the middle of

a transaction
Network latency extended to 1000 ms

Loss of access to primary AD server CPU failure
Unsupported browser access attempt Log files out of space
Password fail on server-to-server

communications
Two disks crashed, hot-spare disk did

not work
Deadlock in database Timeout of service
Repeated system crash after repair

activity
Corrupt file

Corrupt database File access security violation
AD directory corruption Timeout on SAN disk
Application version/OS version

incompatibility
Expired database password,

application cannot access database
CPU load queue full (recursive

spawned processes?)
Failover cluster switches back and

forth in a loop
Bus error Lost connection to DNS server
Message queue overflow

reasoned decision might need reworking. This leads to a spiral model of
requirements analysis, design, development, utilization, and review that
is illustrated in Fig. 2.3 on the following page. Of course, in software en-
gineering that model is well known and tried, but it is important to point
out that IT system design will gain from that model as well.
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Review

Determine objectives,

alternatives, constraints

Risk analysis

Identify failure scenarios,

evaluate alternatives

Design &

development

Develop and test

next-level solution

Requirements analysis

Plan next phases

Utilization

Operate solution

Fig. 2.3. Spiral model of high-availability and disaster-recovery implementation

2.8 Layered Solution with Multiple Precautions

Our analysis of component and failure categories, and our basic approach
– increasing and balancing robustness and redundancy – lead to a layered
solution. Table 2.6 on the next page takes up the failure categories again.
Table 2.4 introduced them and presented typical failure situations – now
we associate typical fault protection methods for each category that pro-
tects against or recovers from such failures.

We can have fault protection in several components at the same time,
of course. Fault protection here means that there is an explicit process or
procedure, be it automated or manual, that handles faults of that com-
ponent and restores functionality. We say that we have redundancy on
some level if all dependent components are available multiple times or
are redundant themselves and if failover in the case of errors is managed
on that level.

For example, when one has a backup system at a different site where
the failover is controlled manually, this is redundancy on the user level.
It delivers fault protection against all errors if the switch to this backup
system works smoothly. But this is often not the case. Therefore, we usu-
ally want a layered solution where we employ protection by redundancy
for several component categories at once. We will have redundant hard-
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Table 2.6. Layered fault protection

Component category Fault protection

User environment Disaster-recovery processes
Administration environment Disaster-recovery processes
Application Distributed application, failover, clustering
Middleware Clustering
Infrastructure Independent high-availability architecture
Operating system Clustering
Hardware Redundant components, hot-spare disks

maintenance contracts
Physical environment UPS, backup data center

ware components, deploy a clustering solution for some components, and
provide backup systems at a different site to handle disasters.

As mentioned, in theory we would need only protection methods on
higher levels. If the application is fault-tolerant, recovers from user and
administration errors, is distributed over several sites from the start,
runs on different hardware, and does transparent failover and clustering,
then that is sufficient. No other fault protection is needed anymore.

In practice, the higher-layer-only approach is too brittle and intro-
duces too much risk. Component failures should be handled near the
cause of the problem. When a disk fails, we should handle that disk fail-
ure, and should not be forced to move to a whole different system for that.
Such broad-sweeping service migrations are always associated with more
risk than replacing a disk – in particular, if that disk is redundant any-
how.

2.9 Summary

Failure scenarios, outage categorization, and specific availability and
continuity requirements lead to a layered solution that will deliver the
needed value to business:

• Failure scenarios are used to analyze what can happen to our IT sys-
tems.

• The resulting potential outages from such failure scenarios are catego-
rized, according to probability and damage. Some failures must only
result in minor outages, some failures may result in major outages,
and some failures are not covered at all – we will live with the resid-
ual risk.
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Example scenarios Category

Server crash
Operating system panic
User error destroys data

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Minor outage:
covers “normal operations”

High availability required
Availability SLA:

e.g., 99.99% per year
Frequency SLA: e.g., max.

2 incidents every 3 months
Outage SLA: e.g., max. 15 min

per incident

Administrator error destroys data
Software error corrupts data
Environment failure destroys

server(s)
Catastrophe destroys environment

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Major outage: “disaster”
Disaster recovery required
Recovery time objective:

e.g., 1 h
Recovery point objective:

e.g., 8 h
Service recovery time:

e.g., 2 weeks

Fire in primary and backup site at
the same time

⎫⎪⎬
⎪⎭

Not applicable,
no recovery provided

Outside project scope

Fig. 2.4. Combining failure scenarios, outage categories, and requirements

We have thus three outage categories:

1. Minor outage requirements
2. Major outage requirements
3. Not applicable

Each of these categories has:

• A fault-protection or failure-recovery strategy
• Associated SLAs

This clear separation of concerns gives us the opportunity to plan our
projects properly and communicate them to our peers and to business
owners.

If we put these items together, we come up with the summary in
Fig. 2.4. There are also some example scenarios and example SLAs in
that figure for better illustration.
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Architecture

An architecture is often seen as the artifacts that describe the structure
and high-level workings of a system. Is the architecture of a house the
drawing that describes where the walls are and how high the ceilings
are? Well, surely that drawing is an important artifact of an architecture,
but it is not representative of an architect’s work. An architect is respon-
sible for gathering and documenting the objectives, planning the work,
organizing stakeholders, designing the system, and providing the means
to control the implementation. Thus, describing the “system structure”
and “system functionality” is only part of an architect’s work.

We approach the architecture topic in the broader sense. Of course, we
are concerned with high availability and disaster recovery for systems,
with their structure and functionality; this is the topic of this book, after
all. Therefore, the design of the system structure is an important part.
But we also take the view beyond the system and look at the other parts
of an architect’s work, at the objectives for high-availability systems and
how they are gathered, and at the business reasons and conceptual model
that guide the system design.

Without the objectives and a grounding in business processes, any sys-
tem design will “float in the air.” For example, we might implement fea-
tures that are not required at all, or we might even miss features. In order
to spend our money in sensible ways, it is mandatory that we anchor the
architecture to our business and justify its business value.

This chapter will present the information that we need for an archi-
tecture in a structured way. An architecture is a set of documents that de-
scribes that information – we will see what documents should be written,
the structure of these documents, and proposed content for each section
of the documents.

The target audience for this chapter is:

• IT architects who have to design high-availability systems
• Managers who have to set objectives (planners)
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• Managers who manage business interfaces (business process owners)
• Developers who want to know what demands they will get “from

above”

This chapter will not go into technical details though – that is what the
following chapters are for. Instead, the aim is to get a feeling for our un-
dercurrent beliefs, and how we approach this area of work.

The presentation follows roughly the Zachman Framework for Enter-
prise Architecture [15, 8]; as far as it is sensible, as it is not our goal to
create an architecture for the whole enterprise. Instead we want to create
an architecture template for the domain class high availability and dis-
aster recovery, i.e., a specific IT architecture for specific IT requirements.
Zachman is a very strong proponent of the view that architecture is more
than system design. For him, an architecture is a two-dimensional en-
deavor where certain aspects are described for different scopes or differ-
ent abstraction levels.
The aspects are:

Data: What is the architecture concerned with, on the respective abstrac-
tion level?

Function: How is the data worked with, or how is a functionality to be
achieved?

Location: Where is the data worked with, or where is the functionality
achieved?

People: Who works with the data and achieves the functionality? Who is
responsible, who approves, who supports?

Time: When is the data processed, or when is the functionality achieved?

Each aspect can be described for each of the following abstraction levels
that make up the structure of this chapter:

Objectives: What shall this architecture achieve? How shall it be done,
on an organizational level? Which organizations are responsible? Sec-
tion 3.1 describes that level.

Conceptual model: Realization of the objectives on a business process
level. Explanation of how the business entities work together in busi-
ness locations on business processes, using work flows and their
schedules. Section 3.2 explicates the content of this level.

System model: The logical data model and the application functions
that must be implemented to realize the business concepts. The roles,
deliverables, and processing structures to do so. Section 3.3 intro-
duces the abstract content of such a model. The “system what” and
“system how” descriptions are the artifacts that are commonly desig-
nated as architecture documents but are better named system design.

In fact, Zachman’s framework has an additional aspect (motivation or
rationale), and two additional abstraction levels (technology model and
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detailed representation). We do not need this aspect and these very low
level abstractions for our presentation, so we leave them out.

Table 3.1 on the next page gives an overview on our architecture, using
the familiar layout of the Zachman Framework. A table is created where
the abstraction levels are rows and the aspects are columns. For every
abstraction level, each aspect is summarized in a few words. The next
three sections will look at the abstraction levels and present each aspect
in more detail. Thereby, the table is a one-page summary of the whole
architecture.

The table emphasizes two cells that make up the system design. For a
technically oriented book such as this one, these are the most important
part of the architecture. They are presented with a special focus as we
concentrate on these two cells in Chap. 4.

� Architecture Deliverables

As mentioned already at the start of this chapter, the deliverables of an
architecture are documents. That means that the complete architecture
is made up by several documents that describe each architecture level
and each aspect. But distribution of the architecture’s description over
documents is often more a matter of organizational processes (authorship,
reviews, approval, release cycle, etc.) than of content.

Very often, the objectives and the conceptual model are described in
one document. This is especially sensible when the same authors are re-
sponsible for both. It might be that these two parts are written at differ-
ent times: first the objective part is written, approved by business owners
or executive management, and then the conceptual model is added to the
document. But in very large projects, these two parts will be written by
different authors and thus will probably be separate documents.

For the system model two approaches exist. In companies that are
more process-oriented, projects create one document that describes the
whole system model, including the complete system design. As the other
possibility, often done in projects in technology-oriented companies, the
system model gets its own document or is added to the conceptual model
document. In this case, the system design part of the system model (that
is the “what” and “how” cells in the Zachman table) are only described at
a very abstract level, because the system design gets its own document.
This is propelled by the conviction that the system design is actually the
only part of the architecture that counts for implementation because it
describes the technological aspects of the solution.

So we have a choice to create between one and four documents. The
parts are:

1. Objectives
2. Conceptual model
3. System model with a high-level description of the system design
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4. System design

The best advice for most projects is to create two documents, one with
objectives and a conceptual model and one with the system design. The
system model is either described in the first or in the second document –
that choice depends on the project team, if it is more process-orientated
or more technology-oriented.

Each document thus consists of one row or several of the rows in the
Zachman table. Each row is one major document part. The aspects (the
table columns) become the sections of that document part. In the rest of
this section we will have a closer look at those sections and what should
go in them.

3.1 Objectives

Since the whole of the first chapter was concerned with the reasons why
we want and need high availability and disaster recovery, this section can
remain short and will present the known facts in a structured manner.
The main target audience for this section is business managers who set
the objectives and project managers who need to gather objectives for a
project proposal, or who need to specify requirements since they started
with vague objectives only. Of course, the topic is of interest for developers
too.

What

Business continuity is the overall business objective that we need to meet.
It is met by a process that ensures that we can continue with business
operations regardless of any incidents, interruptions, and problems. The
business continuity process is at its heart one of the central risk mitiga-
tion activities of any company. In many publications, the term business
continuity is used both for the objectives and for the process; in this book
this is done as well.

It is not only there for incident and problem avoidance. While it is
traditionally its main goal to prepare against failures so that they do not
have consequences, business continuity as a modern process also includes
adaption to changing requirements and realizing opportunities. As such
it is one of the main tools of the agile enterprise that does not only adapt
to changes, but rides the waves.

IT service continuity is the derived objective that applies as a busi-
ness goal to a company’s IT environment. The same term is used for the
process to achieve the objective, as with business continuity. This pro-
cess must manage IT services that are relevant for important or mission-
critical business processes. It must ensure that incidents do not impair
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service delivery and that users can use these relevant IT services within
chosen service levels.

How

IT service identification is the first thing one has to do. If you do not have
a list of your IT services, now is a good time to start one. But a list alone is
not sufficient. You also need a categorization of your services, as explained
in Sect. 2.2 on p. 17.

If your company has proper business process documentation, that is
your best bet to start. This documentation should have associated assess-
ments that make clear which are the mission-critical business processes,
which are important, and other appropriate categorization. If such as-
sessments are not there, you discovered a job half done – do not let your-
self get immersed into business process definitions, this is not your task.
Your task is using those definitions to create proper objectives for IT ser-
vice continuity.

If there is no business process documentation, or if the assessments
are missing, you need to take stock of your IT systems and check what
runs on your systems. This is a good thing to have anyhow, and most IT
departments have that information at least in large parts.

A configuration management database (CMDB), an asset manage-
ment system, or an inventory system may provide information about
your IT systems, often without information on the services that they
are hosting. Ideally, they would include that information as well, since
it is very valuable for change, problem, and incident management. But
many CMDBs tie configuration information to specific systems and can-
not capture services that run distributed over several hosts or may mi-
grate seamlessly from one host to another. Therefore, in most companies
the CMDB is not the right place to look for such information – though it
may be a start, it may list system-bound services.

For each service, you need to specify its outage category, as intro-
duced in Sect. 2.2 on p. 17. Is it mission-critical, business-important,
or a business-edge service? Problems from the past and associated con-
sequences are good indicators of its real importance. This is a business
judgment, of course. Many project and department leaders will be quick
to assert the importance of “their” processes and needed IT services. But
eventually the real question is: How much money does your company lose
when an IT service is not available anymore. This must be answered –
and the answer to that question will be the main input to determine the
need for high availability and disaster recovery.

It is very valuable to be able to measure the availability of a system. If
you are able to specify what shall be measured from a business perspec-
tive, the technicians will have a chance to actually deliver this measure-
ment to you. Otherwise they will not test at all or will make up a test –
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and then you have to rely on your luck and their intuitive understanding
of the business process to get the right checks. An end-to-end test is ideal.
This sounds easier and more trivial than it is. One needs to identify the
essential functionality of each service and set up the objective to test for
that functionality. Much too often, functionality tests are designed from
a technical point of view, and miss the mark in testing business-relevant
functionality.

Where

Your list of IT services that you have or have started, must have two
columns among others: (1) the location (site, building) in which the ser-
vice is running and (2) the location of its users. Remember that this is not
a 1 : 1 relationship even if it seems so for simple services: eventually, some
services will be used at many sites, or will be provided at many sites.

This information is important as it provides the objectives for avail-
ability and disaster recovery of the IT infrastructure that connects users
and servers. All your precautions at a site will not be enough if your users
at another site cannot access the service and they need it urgently for
their work.

You should also add information about locations of outsourced IT ser-
vices. This sets up the objectives for the service provider and can be used
by you to formulate your requirements better and audit their service de-
livery.

Who

Responsibility for high availability and disaster recovery is located in the
IT department. If we have outsourced our IT services, we might be in-
clined to think that we have outsourced the responsibility to the service
provider as well – but this is never the case. One can outsource architec-
ture creation and operations, but one can never outsource responsibility.

The business process owners need to honor their responsibility too.
They must not take for granted functionality and availability of IT ser-
vices, but must be aware that it takes earnest, dedicated work to provide
them. This work can only be done properly, if changes in processes are
communicated properly and in a timely fashion to the IT staff. It happens
much too often that process changes become too expensive because re-
lated IT service changes were only implemented as an afterthought, and
not planned from the start.

In the end, one of the main demands is “work together, communicate
requirements, problems, and changes.” Easy said – but the larger your
company is, the harder this is to do.
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When

An important objective is the expected time frame for implementation of
high-availability or disaster-recovery services. Of course, the estimation
depends on several important factors:

• Are your service information and associated service level agreements
available or not? If you have to compile them first, a few weeks can be
easily added to the time frame.

• Are requirements clear enough or is it part of your project to deter-
mine the requirements? The latter situation is not bad – in fact, it is
the common case – but it will prolong the duration of your project and
that must be taken into account when time objectives are set.

• The experience of the IT staff to create high-availability and disaster-
recovery solutions. If they have done it a dozen times already, they
will have created templates and can reuse their solution. If they do it
seldom, they will need longer. If they are doing it for the first time,
you should seriously consider help from the outside; that money for
technical consultants is well spent.

Sadly, this book cannot provide good estimations of how much time
will be needed in your specific situation. Dependency on the widely vary-
ing factors listed above results in time ranges that go from a few weeks
to several years, and such information is not really valuable for you, is it?

But maybe an example from one of our projects can illustrate realistic
time spans. For a multinational company with thousands of servers, the
complete project needed 2.5 years. The following time ranges were used
for intermediate process steps:

• Six months to set up big rules and accomplish the information ex-
change between business organizations and the IT department

• One year for implementation of (1) disaster recovery for mission-
critical IT systems and (2) high availability for business-important
services

• One year for smooth integration of these solutions into IT processes
and operational procedures, also with tests to check if the disaster-
recovery implementations really work.

In the specific case, almost all the effort concentrated on disaster recovery,
as high-availability solutions for mission-critical services were in place
already.

3.2 Conceptual Model

This section will guide IT architects and project managers to the topics
that should be included in the conceptual model of high availability and
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disaster recovery for a company. Our goal is to provide the ability to con-
nect the system model (that comes later) to business processes and busi-
ness objectives. This will give you the opportunity to capture the business
need for technical solutions and also to explain them to auditors, those re-
sponsible for budget, and other managers.

What

The objective is provision of business continuity and IT service continuity.
Conceptually, this means providing improved overall availability of IT
services, both in normal operation and in disaster situations. Therefore
this part of the architecture is a list of all relevant services, systems, and
their categorization.

As it fits the theme of this book, we will concentrate on mission-critical
and business-important IT services that run on servers. The services will
be the focus of our attention; servers (i.e., specific hardware systems) are
only a means to our end and are only mentioned in passing. We will also
consider availability issues of service-independent infrastructure, e.g.,
the network and associated services.

Edge systems, i.e., desktops, workstations, and small department
servers, are not part of an architectural model for high availability. De-
pending on the objectives for disaster recovery, they might be part of the
disaster-recovery architecture.

How

On the conceptual level, processes are at the heart of objective fulfill-
ment. All technical considerations, all technology, and all tools will not
help if they are not properly used. Only processes make usage reliable
and repeatable. It is not enough that one has a guru who can build and
fix almost everything – if that guru is on vacation, or has an accident, the
rest of the company must be able to continue working on IT services as
well.

In the past, provision, delivery, and management of IT services were
organized methodically. This has changed in the last few years, starting
with work in the UK. There, the Information Technology Infrastructure
Library (ITIL) was developed in the late 1980s. It describes common IT
processes in service management (delivery and support), infrastructure
management, security management, and application management. Sadly,
the IT world needed 10 years and the dot-com crash to catch on and see
the importance of these processes – and now they overdo it sometimes.

In our context, the processes for service delivery are the most impor-
tant, among them availability management and IT continuity manage-
ment. The former provides the process framework for high availability,
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the latter the framework for disaster recovery. The task of this part of the
architecture is to write up the business processes

When one realizes these process frameworks, it is important to do
it one step at a time. Plan small steps, with known deliverables that
have a measurable return of investment, and where the reason for pro-
cess changes is well known. Much too often, process changes are done for
their own good, or because they shall conform to some arbitrary set stan-
dard. Do not make that error in your organization, instead cherry-pick
the changes that will give you an advantage in your IT service delivery.

Where

Our processes and also our system work are concerned with the place
where delivery of mission-critical or business-important IT services takes
place: enterprise-strength data centers and associated locations. This also
includes the network that connects data centers and office or plant loca-
tions.

Plant locations merit some additional remarks. Factory IT installa-
tions must fit to the mindset of manufacturing departments, and they are
used to having every relevant infrastructure on-site, including backups.
They have backup power generators and backup machines, everything to
run the business at this location in the case of failures. The IT systems
that control plant elements are only of use if the plant is still functional.
This is relevant as no off-site backup locations are needed for plant IT
systems, on-site backup systems are sufficient.

Since single business-edge systems and services are not our concern,
we do not need consider availability of office systems and end-user desk-
tops in our high-availability architecture. In the disaster-recovery part of
the architecture, when we choose to include destruction of office environ-
ments, backup locations for office space should be planned for, of course.
This is especially sensible for areas where natural disasters like floods,
hurricanes, or earthquakes are expected.

While one can use most of our high-availability and disaster-recovery
concepts also for mid-sized businesses and the small office/home office
(SOHO) market, we should be aware that only an enterprise-class data
center will be the real McCoy. It simply is not possible to realize genuine
complete high availability without such an infrastructure, since some re-
dundancy demands (e.g., multiple power grid connections and careful ca-
bling) can only be realized there.

Who

Chief information officer (CIO) and chief technology officer (CTO) are
the executive positions that plan and supervise establishment of high-
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availability and disaster-recovery measures. Eventually, they have to de-
cide what projects will be established and which services are important
enough to spend the money available on.

The IT department is in charge of fulfilling that demand. It realizes
the processes, and also works on the formulation and implementation of
the system model.

To achieve that goal, external companies will contribute. This may
start with consultants who bring in external experience or help to trans-
late between the technical staff and business owners. It may also mean
whole outsourcing of IT system management or even IT processes to ex-
ternal companies. Then the task of the IT department concentrates on for-
mulation of processes, service level agreements, and architectural goals
that must be obeyed by the outsourcer.

When

One of the tasks of the IT department and its executive management is
to come up with a list of outage event categories and scenarios that might
happen. For each category and for each scenario, it must be specified
how availability and disaster recovery have to be handled; with manual
workarounds, quick fixes for an incident, or complete problem analysis
and resolution.

Reaction to failures differs between outage categories, and the task of
the conceptual model is to give guidance about expected properties of pro-
cesses. That establishes requirements that the system model must fulfill.
The processes have already been expressed in the “How” aspect, and are
usually subsumed under the categories incident management, problem
management, and availability management. This part of the architecture
describes the events that trigger the start of such processes and failure
scenarios that must be covered.

3.3 System Model

As mentioned at the start of this chapter, the system model is the artifact
that is the beef of architectural work. This section has information for IT
architects, project managers, and developers. We will see now the high-
level overview of the system model; the next chapter will then dive into
the details of the system design.

What

Realization of high availability and disaster recovery is concerned with
IT services and systems, i.e., services are delivered by systems:
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• Running on hardware
• That are controlled and managed by an operating system
• Where application-independent software supplies a middleware layer

of functionality
• That are used by application software
• That are maintained by IT staff and used by end users
• That run in a physical environment
• That use application-independent infrastructure services like net-

works, directory services, and maybe authentication or license ser-
vices

These services are realized by system components like the CPU, mem-
ory, storage, database servers, application servers, and a set of applica-
tions. These components can be categorized to deliver a service or func-
tionality from one of the items above. For example, database and J2EE
application servers are in the category middleware and the CPU and
memory are in the category hardware. Components depend on other com-
ponents for their functionality. On a higher abstraction level, one can
also express dependencies between component categories, e.g., one can
say that the application category depends on the middleware category.

For each system, we can pin down a diagram with dependencies of
components or component categories. For most systems, this dependency
diagram of component categories looks similar or even identical. The cat-
egory dependency diagrams often form a hierarchy that we call the sys-
tem stack, even though it is not a stack in strict computer science terms.
Section 4.1.1 on p. 56 presents the system stack in more detail.

How

High availability and disaster recovery are primarily realized with re-
dundancy and robustness. This book is mostly concerned with the system
model; therefore, the rest of it will present that one sentence in intrinsi-
cally deep detail.

Redundancy often means replication of functionality or data over sev-
eral system components. To be able to do that, functionality or data stor-
age must be independent of the actual system component at hand. This
leads to the demand of system independence that is often realized by vir-
tualization.

Design patterns may be used for high-availability and disaster-recov-
ery realization. They are the foundation to plan and create appropri-
ate levels of reliability, availability, and serviceability (RAS). In addition,
rigid test approaches are described that can be used to assert that our
redundant and robust systems are really that, and work to deliver the
chosen objective. These design patterns are not on the code level though.
They are methods and plans of solutions that fit scenarios.



3.3 System Model 53

Where

In theory, redundancy at some high layer in the system stack is suffi-
cient, as it covers all lower-level failures as well. But this is not practical.
Higher stack layers come with raised complexity, and this implies higher
risks since more things can go awry without dedicated countermeasures
available. This is not a simple and robust solution anymore.

Therefore, we feature the approach that redundancy and robustness
must be designed on several stack layers of a system. Only then will we
get services that deserve the label highly available and that survive dis-
asters.

Who

Senior management has to set up the projects for implementation. Pro-
ject managers and architects are responsible for planning, production en-
gineers and system administrators for realization.

External consultants and vendors will help to achieve that goal; they
are also a valuable source of technical information that is needed during
implementation.

When

The system model is concerned with failure events and their categoriza-
tion in scenarios. This is the case for both local failures (the domain of
high availability) and nonlocal failures (the domain of disaster recovery).

Such failures do not only happen by accident or because some hard-
ware or software component is erroneous. Quite often, they happen dur-
ing standard service management procedures. Therefore we will pay spe-
cial attention to events that happen during changes, and during incident
and problem management. For example, incident management is only
concerned with quick fixes that may cure a current symptom, but may
reduce redundancy or robustness as it happens. We must plan ahead for
that symptom and look after it throughout the life of our IT systems. For
example, in the incident process, a problem analysis and robustness anal-
ysis may be added, and should be done after the quick fix.
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System Design

The system design is the part of the architecture that explains what com-
ponents a system consists of and how it works, i.e., how high availability
and disaster recovery are realized for that system. It is a document or
a set of documents that describe the system’s structure, potential fail-
ures, and how requirements are fulfilled.

To be able to create a good system design, we need to know a few basic
concepts first that help us to communicate our design clearly and guide
us towards a good solution; thus, the chapter starts with this explanation:

• Base concepts are means to analyze a system and categorize its com-
ponents, as well as helping to synthesize a good solution. Section 4.1
elaborates on these topics; it builds on the basic approach that we have
met already in Sect. 2.7.

• The solution roadmap is a process description and a check list to
achieve good high-availability and disaster-recovery system designs
that is presented in Sect. 4.2.

• System solution patterns are common scenarios that can be reused
in other contexts and serve as example system designs. We will learn
about them in Sect. 4.3.

All these descriptions have a focus on technical questions. The system
design has the actual computer system at its heart and covers the tech-
nology that is used for implementation. It does not cover the processes
that are used to create or maintain the systems.

4.1 Base Concepts

The last sections presented the architecture in terms of objectives, the
conceptual model, and an overview of the system model. The system
model is at the focus of this book; its artifacts are emphasized with a
gray background in our overview in Table 3.1 on p. 44. This section has a
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closer look at the concepts that are used to realize high availability and
disaster recovery on the system level.

Good processes, solid architecture, careful engineering, and consider-
ation of details is all it takes to successfully realize high-availability and
disaster-recovery solutions. The main stumbling block is that details mat-
ter. When you get a detail wrong, your system might stand still and your
availability objective has dropped dead on the floor; that is the discrete
nature of IT systems.

As usual, the basic recipe for problems with lots of details is “divide
and conquer.” Compartmentalize the problem and the tasks, name the
dependencies, and tackle each subproblem one after the other. All our
concepts and actions can be reduced to four key abstractions and princi-
ples. The first abstraction delivers the categorization, the other three are
principles that are applied for each category:

1. System stack is a component categorization that is an important
weapon. The categorization will partition the overall problem into di-
visions that can be handled separately.

2. Redundancy is the hallmark principle that may be applied in each
layer.

3. Robustness is the corrective check that prevents us from going over-
board with our redundant designs.

4. Virtualization allows for flexible mapping of IT services to IT sys-
tems or IT components, thus earning us fewer dependencies.

4.1.1 System Stack

The system model in Sect. 3.3 on p. 51 already presented a categoriza-
tion of system components that is the base for our term system stack.
Figure 4.1 on the next page takes it up and presents it again: eight com-
ponent categories with typical dependencies.

The system stack is the dependency diagram over components or com-
ponent categories. At the top of the stack are the components on which
no other components depend. At the bottom of the stack are components
that have no dependencies. Let us have a look at each component category
first, and then at notations and dependency diagrams.

User Environment

User environment is the category that combines everything user-work
related that is not part of any software or hardware. First and foremost, it
includes the user as a kind of “component,” and thus captures all human
user errors and related fault protections. Second, this category is there to
express dependencies on infrastructure services that are not accessed by
the application software, e.g., authorization and authentication services.
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user environment

application

middleware

operating system

hardware

physical

environment

Fig. 4.1. System stack. Arrows are dependency relations

Administration Environment

Administration environment is the category that combines everything
administration-work related that is not a software or hardware compo-
nent, but human work. This category consists mainly of the components
“system administrators” and “operators”, but also security administrators
and other administrative tasks are captured in this stack layer.

This category is there to capture all human administration errors and
related fault protections. Second, this category is there to express the
importance of administrative work in the dependency diagram and how
much can go wrong if administrative or operative work is botched.

Application

Application is the category of software components that make up our sys-
tem or service. Very often, this whole category will be just one applica-
tion; here the distinction between components and their category becomes
blurry. But also it is not seldom that a service is delivered by a combina-



58 4 System Design

tion of applications, e.g., a design and engineering workplace service may
consist of a CAD application and a product data management application.

Middleware

Middleware is the category of service-independent software components
that are integrated into the application. Database servers, application
servers, Web servers, messaging servers, and transaction managers are
all available independently of a given application or service. But they
need to be adapted and configured specifically for that service. That is,
something is middleware if we can get it independently of the application
software but it has to be configured to be an integral part of the service
delivery.

Databases are an illustrative example: while we talk about the data-
base software in terms of the producer’s brand name (Oracle, DB2, etc.),
when it is used in an SAP installation, one talks about the “SAP database”
and drops the brand name because the database schema and configura-
tion is more important for the service.

Infrastructure

Infrastructure is the category of service-independent software and hard-
ware components that are used by application, middleware, or other cat-
egories, but are not integrated. The whole network (routers, switches,
cables), directory services like the Domain Name Service (DNS) or Mi-
crosoft’s Active Directory (AD), license servers, and authentication ser-
vices are examples of components in this category. They are used by the
service, many components depend on them, but they do not get to be part
of it.

Operating System

Operating system is the category of software components that control and
manage hardware resources and provide an abstract interface for other
services to run on. This category includes also management components
that are standardized (e.g., by POSIX) or are delivered by the hardware
vendor.

Interestingly, the difference from middleware and infrastructure is
sometimes difficult to express and is not always made for technical rea-
sons, but is used to express organizational relationships. As an example,
the job management system cron is seen as part of the Unix operating sys-
tem since it is standardized and delivered together with the hardware,
whereas other job management systems (e.g., LSF) are seen as middle-
ware because they must be bought independently.
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Hardware

Hardware is the category of components from which our systems are cre-
ated. It includes not only the core computer components like CPU, back-
plane, and interfaces, but also storage – both internal and external stor-
age subsystems.

The latter categorization is done for ease of presentation: external
storage subsystems are actually computer systems in their own right,
but they are better modeled as black boxes in the hardware stack layer.

Physical Environment

Physical environment is the category of components where we operate.
Our data center with rooms, power supplies, air conditioning, and the
river nearby that might flood our building all belong to the physical envi-
ronment. For that component category, “failures” usually result in major
outages as they have consequences for many systems at the same time,
maybe rendering them unusable at the same time.

Notation for Components and Dependencies

Figure 4.1 on p. 57 introduces a graphical notation for components, com-
ponent categories, and their dependencies. Within that notation, we do
not differentiate between components like CPU or memory and categories
like hardware. They are named and put into boxes. Dependencies are ex-
pressed by arrows between those boxes, where an arrow expresses the
“depends-on” relation.

In fact, the differentiation between components and component cate-
gories is negligible in practice. The context provides the abstraction level
we want to discuss at the moment, and we simply select an appropri-
ate term, either on the component or on the category abstraction level.
In addition, components sometimes consist of other components (e.g., the
storage unit may have a CPU itself); there we have already an abstraction
layer that expresses the consists-of relationship. Therefore, in the rest of
this book we will ignore the fine-grained terminology difference and use
the term “component” for components and categories alike.

The notation in that diagram is not complete. We will enhance it with
redundancy and repetition information in Sect. 4.1.2 on p. 63.

Dependency Graphs and Diagrams

A component depends on another component if there is a direct depen-
dency or if there is any dependency between subcomponents. All depen-
dencies of a system form a graph, named a dependency graph. This graph
must be acyclic; the system architecture must be changed if it is not.
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Cyclic dependencies cannot be resolved with existing high-availability
solutions. The picture that shows a dependency graph is called a depen-
dency diagram.

If we ignore the infrastructure and administration environment com-
ponents, we see that components in the dependency graph form a total
order: there is a unique order of all components c, so that ci depends only
on c j, with j < i. In other words, for every pair ci and c j we can deter-
mine exactly if ci comes before c j in the dependency graph or not. The
infrastructure component introduces a partial order, as we cannot deter-
mine any transitive dependency between it and hardware or the physical
environment.

Please note that this dependency order lists more independent com-
ponents first, i.e., hardware comes before operating systems, which come
before applications. The list is from top to bottom in Fig. 4.1 on p. 57.

Since we have mostly a total order, we can see the dependency graph
as a sort of linear hierarchy and use the term system stack for it. We say
that a component ci is on a higher stack layer than c j if there exists a
transitive dependency ci �→ c j and j < i.

Of course, strictly speaking the system stack is not a stack in the
computer science sense. There, only dependencies to the next-lower layer
would be allowed, but we also have dependencies to arbitrary lower lay-
ers. Nevertheless, the common English usage of stack covers our model
as well and it is a very illustrative usage of that term.

Getting a Project-Specific System Stack

Now that we have seen a generic system stack, we need to instantiate
it for our specific system model. For each component category, we check
if our application has such components, determine their dependencies,
and add them to our graphics. Up front, it might be that certain compo-
nent categories are not used at all, e.g., there might be no middleware
(databases, application servers) in our system. We can then discard those
components from our specific system stack immediately.

Next, we take the preliminary system stack and use it to create fail-
ure scenarios. For each component we make a list of what problems could
appear. Eventually, the goal is to determine the exact scope of our project
and thus of our architecture. Some failure scenarios will be outside the
scope of our project – e.g., a bomb at our data center. If all failure scenar-
ios for one component are considered outside the scope, that component
can be eliminated from the specific system stack as well.

This elimination often hits components at one of the ends of the stack.
Most often, failure scenarios for the physical environment or infrastruc-
ture are considered beyond a project’s scope. Also, failure scenarios in
the user or administration environment are often not considered. In fact,
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this is the cause for the distinction between high availability and disas-
ter recovery: in principle, both are concerned with the same task, service
continuity and fault protection. In practice, protection against building
outages (e.g., fire, hurricanes), user or administrator errors, and infra-
structure outages are handled in disaster-recovery projects, while pro-
tection against outages of computers and databases is handled in high-
availability projects.

As an architect or a project manager, be careful to document that elim-
ination. In fact, this elimination must be made on the level of the concep-
tual architecture model and must be consistent with the objectives model.
If that is not done you will likely get into trouble if a failure happens that
you just declared to be outside your scope. If the objectives or the concep-
tual model does not record a sign off of this view, you might be held re-
sponsible for the failure consequences nevertheless. After all, these scope
exclusions must be recognized during risk management and might need
to be handled in separate projects. You might also want to make sure that
the scope exclusions are documented in your company’s SOX, Basel II, or
other risk management documentation, as demanded by regulations.

Finally, we have a high-level system stack for our specific system. It
consists of all relevant components, excluding those that are not used
here and those that are beyond the project’s scope. The next thing will
be to refine it by adding details and zoom into components to name sub-
components. Eventually, we will achieve high availability and/or disaster
recovery for this system’s stack by assuring redundancy through compo-
nent replication.

Division of our complete problem into these stack layers gives us the
opportunity to think about potential problems and their solution sepa-
rately. This separation is so important that it builds the base for the
whole book structure: the four stack layers from hardware to applica-
tions are covered by Chaps. 5–8, the user and administration layers are
handled in Chap. 10 on disaster recovery, Chap. 9 is on infrastructure,
and Appendix B is on data centers.

4.1.2 Redundancy and Replication

High availability is fault protection against minor outages; disaster recov-
ery is fault protection against major outages. Both objectives are actually
two sides of one coin: incidents and problems happen, and we need to cope
with them. Redundancy is the ability to continue operations in the case
of component failures with managed component repetition.

Providing a backup component or system for the error case is the basic
precaution. This can be a duplicated part, an alternative system, or an
alternative location. There can be just one duplicated backup component
or there can be several components. Therefore we cannot use the term
“duplication,” so we call this backup approach repetition. All component
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repetitions have one goal in common: they avoid single points of failure.
If we succeed in this, we will have achieved a fully redundant installation
that will provide both high availability and disaster recovery if needed.

But simply adding a backup component is not enough. This backup
component needs to be managed. There must be a third component that
looks to see if one component is faulty, prevents its usage in that failure
case, and makes the backup component do all functionality. For example,
if we have two network cards, this is not a redundancy in itself. Only if
some component notices that one network card is not functional anymore
and uses the backup card for all traffic, then we can name that configu-
ration redundant. This component can be the operating system (so-called
“multipath configuration”) or it can be a human being that reconfigures
the network card.

Also, if the component has a persistent state (i.e., stores data or the
configuration somehow), the backup component must be kept in the same
state, otherwise it cannot take over the service in the case of failures.
This requirement is loosened sometimes, and some data loss is accepted
to continue with the service. This is usually the case for disaster-recovery
scenarios, where major outages are associated with a recovery point ob-
jective, a point in time when data must be restored again. Therefore repli-
cation of the state is a precondition. But please note that the state is not
data alone; the configuration must be replicated to the backup compo-
nent as well. This can be files or registry entries in the case of software
components, or firmware releases in the case of hardware components.

Replication can happen in two ways. A one-way replication is the case
where data is first written on a “primary” component and then copied
to a “backup” component. A two-way replication is the case where data
(i.e., persistent state) is written to the duplicated components at the same
time, controlled by the management component. Two-way replicas are
better known as mirrored components.

In summary,

Redundancy = repetition + management,

where

Management = replication + fault handling.

This principle leads to an essential part of our terminology. It is not suffi-
cient to say that we have two redundant components, we must also name
the management component. We express this as

Components foo are redundant via component bar.

Example expressions would be “disks are redundant via the volume man-
ager” (in the case of mirroring) or “primary and standby databases are
redundant via the system administrator” (in the case of human failure
handling).
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Network card Network card

Operating system

Fig. 4.2. Graphical redundancy notation: basic managed repetition without repli-
cation

There might even be the case that management is done with several
components. For example, there might be one component that does the
replication and another one that does fault handling. This occurs some-
times on higher levels in the system stack, when manual fault handling is
involved. Replication might be handled by some software or system com-
ponent, but activation of the backup component is handled by processes.
For the sake of conciseness, this fine distinction is not mentioned through-
out this book. Instead we always talk about the management component
and recognize that it could be several components.

The point with manual fault handling is also worth emphasizing: on
lower system stack levels, fault handling is often based on technology
and is automated, but on higher levels, fault handling is dominated by
processes and most often is not automated. We do not want an automated
system to take the decision about disaster recovery and trigger its execu-
tion; that would be much too risky. Instead, humans should be involved
in the decision and in executing such an important step.

Dependency and Redundancy Diagrams

Figures 4.2–4.5 introduce a graphical notation for redundancy that en-
hances dependency diagrams:

• Thick gray lines are used to denote repetition.
• One-way replication is involved if the gray line has one arrowhead.
• Two-way replication (mirroring) is involved if the gray line has two

arrowheads.
• The managing component is connected to the gray (repetition) line and

ends with a dot on that line.
• Redundant components have double-line borders.

This notation completes the dependency diagrams.
Sometimes, the redundancy management line would make the dia-

gram unreadable owing to too many lines. Then we leave it off and add a
legend to the diagram that explains the management relationship.
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File system File system
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Fig. 4.3. Graphical redundancy notation: one-way replication

Disk Disk

Volume manager

Fig. 4.4. Graphical redundancy notation: two-way replication

Hardware Hardware

Operating system Operating system

HA cluster

Storage

Fig. 4.5. Graphical redundancy notation: dependency on redundant system
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Dependency and redundancy diagrams are means for communication,
they are not standardized circuit diagrams. They are used to emphasize
the essentials to our fellow coworkers – drawing them requires design
decisions, e.g., to which level of detail we go for the component in the
diagram. For the sake of readability, we just name them dependency di-
agrams in the rest of this book and drop the qualifier that redundancy
information may be included.

Also, dependency relations are sometimes difficult to express. Con-
sider the case where both the administration environment and the infra-
structure are part of our project-specific system stack, i.e., they are in our
dependency diagram. The infrastructure and administration components
are supposed to be redundant themselves. This means that we have two
components in the diagram (with double-line borders) where dependency
arrows point from almost any other component in the diagram to them.
That information brings us almost nothing and adds lots of arrows to the
diagram, making the rest of the picture hard to understand. In such a
case, it can be best to add these two components at the bottom of the dia-
gram and to add a legend that all other components depend on these two.
No information gets lost, but the rest of the diagram (where our high-
availability and disaster-recovery design decisions are) is suddenly much
more readable.

Another technique for better readability is zooming. Dependency dia-
grams on high-abstraction levels present coarse granularity of component
abstractions and show the overall picture. Subdiagrams zoom into com-
ponents and show internal dependencies and redundancies.

Objectives of Dependency Diagrams

Dependency diagrams are used to communicate dependencies and redun-
dancies to other workers and auditors, and are a help during discussions.
In particular, they are used to detect and highlight the places where
the system design is not redundant, also called single points of failure
(SPOF).

All components that do not have a double-line border,
have no repetition (gray) lines, and have dependency
arrows pointing to them are single points of failure.

For each of those single points of failure, we need to decide if the risk is
bearable or if we have to introduce fault protection in our system design.
This is mostly a judgment call, on p. 75 this issue is discussed in more
detail.

The highest-level stack components, i.e., those diagram components
to which no dependency arrows point, are very often single points of fail-
ure. When we have full system coverage, we have to look at user and
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administration errors. And these two “components” can always cause big
trouble by deleting or changing data. It is not possible to devise technical
protection against all such errors. Here fault protection does not mean
introducing redundancy (after all, how will you make users redundant),
but means designing policies and mechanisms that will help to cope with
such errors after they have happened and repair the damage in accept-
able time frames.

It is possible to devise a system without any single points of fail-
ure. But note that this is rarely really needed; maybe it is necessary for
emergency communication lines where human lives depend on their func-
tionality. (And note also that even such installations are known to have
long outages during major disasters, like the Indian Ocean tsunami of
2004 or the New Orleans flood of 2005.) Practically, such extreme pre-
cautions are sometimes not worth the money. Instead of such extreme
high-availability fault protection, it is often more sensible to provide ad-
equate disaster-recovery mechanisms and deal with the fault after it has
happened.

A Closer Look at Redundancy and Repetition

Managed repetition of a single component is often not sufficient to achieve
redundancy on a higher system stack layer. Let us look again at the de-
pendency and redundancy diagram in Fig. 4.5 on p. 64. Just installing the
operating system twice on a given piece of hardware would not bring us
redundancy on the operating system layer. Instead, the hardware must
be duplicated as well, and this repetition must be managed too. With-
out repetition of the hardware, duplication of the operating system would
be futile – we could simply restart the system to get it running again,
whereas the storage subsystem does not need to be duplicated as it is re-
dundant already. Incidentally, Chap. 5 will tell you that the assertion of a
redundant storage system is often wrong – both the disk repetition man-
agement component in the storage box and the file systems are usually
single points of failure.

You might notice that the example does not include the physical envi-
ronment and the user environment. That is intended: redundancy is an
attribute that refers to a specific scenario, a project-specific system stack
as outlined in Sect. 4.1.1 on p. 60. When our project is not concerned
with failures in the physical environment, the example shows a redun-
dant operating system. If it were concerned, the hardware would need to
be placed at two locations to achieve redundancy.

Eventually, this leads us to the point where we are able to formulate
in more exact terms what we mean by redundancy: a system has a redun-
dant component on stack layer i when all components of layer j with j ≤ i
are (1) either redundant themselves or (2) are available multiple times
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and the repetition is managed (i.e., the state is replicated and failover in
the case of outages is handled) by another component.

The first condition is introduced to capture the dependency of com-
ponents that are already redundant, like network infrastructure, DNS
servers, or some network storage subsystems. That is not to say that
they cannot or should not be replicated anymore – quite the contrary,
it is common to introduce multiple redundancy by replicating SAN stor-
age systems that are already redundant. But that definition gives us the
opportunity to describe exactly when we have single or multiple redun-
dancy.

The second condition stresses the independence of dependent compo-
nent replication. To achieve a truly redundant database solution, it is not
sufficient to replicate the database on the same server, we need to repli-
cate those servers as well. Either the middleware layer must manage out-
ages in that replication, then we name this a database cluster and call it
redundancy on the middleware layer, or we have one database compo-
nent on a redundant operating system layer (e.g., managed by a failover
cluster component), then we call it redundancy on the operating system
layer.

In theory, this means that if we have the choice between a middleware
cluster and a failover cluster, we should always choose the middleware
cluster. In practice, the choice is not always as easy. It might be that the
middleware cluster software is not mature enough, or is too complex and
operations are error-prone. It might be that we have a failover cluster
already available where the database will be included. We need to take
into account experiences that tell us about the quality of a solution; on
p. 75 we will discuss this consideration in more detail.

Redundancy Is Expressed in Project-Specific System Stacks

It is important to emphasize that this redundancy definition depends on
the pruned system stack that was adapted to our system and our pro-
ject, as explained in Sect. 4.1.1 on p. 60. For example, when our project
ignores failures in the physical environment, we can talk about redun-
dancy on the middleware layer even though both systems might be in the
same data center (and thus have a dependency on the same physical en-
vironment). This single point of failure still exists but is masked out of
our project’s objectives and conceptual model. Figure 4.6 on the following
page illustrates that scenario.

This is so important that it must be repeated: good pruning of the
generic system stack is essential. We simply might not have the resources
to cover failures for some components or there are business objectives why
it is not sensible, but we might also be too lazy. For example, if a plant
is destroyed and the controlling computer is in that plant, it does not
need to be replicated at a backup data center – that is common business
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Fig. 4.6. Masking out components that are not in project scope. Components in
gray are identified as being outside of the project’s scope

sense and sensible pruning. But if we simply ignore the possibility of user,
administration, or application errors and confine ourselves to redundancy
on the middleware or operating system layer that is harder to judge. If
we cannot afford a backup system, OK. But if it is just because “that’s the
way we did it in the past” then you should think about updating the set
of methods in your toolbox.

Figure 4.6 is also of interest because it illustrates the “traditional”
scope of high-availability projects that do not have disaster-recovery ob-
jectives. Applications and infrastructure are simply taken as is, since the
project probably cannot change their deployment anyhow. Human errors
and physical disasters are ignored; fault protection for them is often the
task of another project.
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Fig. 4.7. Google outage message

Redundancy on Several Stack Layers

As already mentioned in Chap. 2, redundancy should be approached on
several stack layers. Even though it is possible to build a distributed re-
dundant application that would cover all failure cases in duplicated lower
layers as well, it is not practical. First, we cannot rebuild all applications
and have to live with those that we must deploy today. Second, on the ap-
plication layer we do not have sufficient information about failure causes
on lower layers anymore to trigger sufficient corrective actions. For ex-
ample, while we might get notice of I/O errors, we will not know which
erroneous disk must be replaced right now.

Google is sometimes cited as an example of such a distributed appli-
cation that does not care for lower layers and handles all outages on the
application layer. But this is not true, quite the contrary. The Google en-
gineers went so far to create their own highly redundant file system to
achieve better redundancy on the operating system level. Google is redun-
dancy on many layers in action, as proposed above. Incidentally, Google
does not cope with errors on all layers, so we still get to see outage mes-
sages like the one in figure 4.7 from time to time. (In that case, the outage
lasted several minutes and also was not a single-server error, the retry
30 s later was not successful, nor were explicit queries to different Google
servers.) Please note that this observation does not denigrate the qual-
ity of Google’s IT architecture or IT staff; they do an outstanding job of
running the world’s largest computing grid today; their architecture is as
highly available as it gets in that application context. The exception from
the rule “Google is always available” is the reason that we reference it
here.
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Having replicated components complicates systems though. If data is
stored persistently, e.g., on a disk, that must be taken into account dur-
ing write and read: write must replicate the data to all components, and
read must select one of the components to take the data from. Even if no
data is involved, component usage must be aware that there are multiple
instances to choose from, which complicates usage as well.

While it is clear that replication is involved in the case of redundant
data storage systems, this is also the case for redundant hosts or redun-
dant data centers. If one operates a backup data center as a precaution
against disaster, the whole data center is a redundant component and
replication needs to be established and managed properly to get it work-
ing.

Redundancy with Cheap Components Is Not Easy

Again, it is important to emphasize one crucial issue: our goal is high
availability and disaster recovery for a complete system, not for single
components. We utilize component redundancy, on several stack layers,
to achieve that goal. This may also allow us to save some money for com-
ponents: sometimes it is possible to use cheap multiple components and
that may be good enough and less expensive than using high-quality com-
ponents. On the hardware level, the concept of redundant array of inde-
pendent disks (Raid) storage pioneered that approach; we describe it in
more detail in Sect. 5.2.1.

An adjacent and intriguing idea is the usage of that “cheap redundant
component approach for hardware components other than storage and
on other system stack layers as well,” as one of the book reviewers put
it. But we have to be careful with that. For hardware components, such
an approach is not a simple task of plugging together available compo-
nents – it demands new designs from the ground up. It is not sufficient
to just cobble together two memory banks without error correcting code
(ECC) error correction to be able to use them redundantly; that usage
must be designed up-front. This sometimes implies adaptations on higher
stack layers too, e.g., special hardware drivers are needed in the operat-
ing system for redundant network cards. “Just” using cheap components,
without proper design, will simply lead to inferior availability owing to
reduced quality, that is all.

In addition, it is hard to define what such a “cheap component” is on
higher stack layers. Let us take a database or any application software
as an example. Cheaper – does that mean it is tested less, has less of the
needed functionality, is more unstable, does no proper resource manage-
ment, and crashes from time to time? Well, if that is the case, remember
that this application holds and manages data that is important for your
business and ask yourself if you want to trust that data to such an ap-
plication. Remember, combination of cheap components in a redundant
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Fig. 4.8. High-availability (HA) cluster dependency diagram: marketing informa-
tion

way must be designed up-front, and that would mean that the applica-
tion software would have to be written with partial failures in mind and
would have to cope with such failures. NASA software is often written
in this way (for other reasons), and as we can see there, writing failure-
tolerant software with such an approach is anything but cheap.

In general, computer science has experimented with n-version pro-
gramming for some time, where independent groups implement solutions
for the same task. The goal of that research was to raise availability
and correctness by comparison of the outputs against each other. This re-
search has shown that many independent implementation groups make
the same errors for the same tasks. Many problem domains have obvi-
ous solutions where the same subtle errors can and will be introduced by
most realizations. In summary, “cheap redundant components” will not
work in the predictable future for higher stack layers.

Almost-Redundant Components

When our dependency diagram shows no single point of failure, this does
not necessarily mean that there are no single points of failure. Detection
of single points of failure depends most often on the granularity of obser-
vation, i.e., on the detail level in which we analyze a component.

This is particularly true for components that are touted as “redun-
dant” by vendors. Let us take the prototypical example of a high-avail-
ability failover cluster that comes with a marketing-level diagram as il-
lustrated in Fig. 4.8. The cluster is said to be redundant (of course, that
is the whole purpose of it), the hardware is redundant via the cluster, and
the storage subsystem is redundant as well.

But if we look into the redundant components, a different picture
emerges, as shown in Fig. 4.9 on the following page. In this diagram,
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Fig. 4.9. HA cluster dependency diagram, reality check. SPOF single point of
failure

we have zoomed in on the redundant components cluster and storage.
A high-availability failover cluster consists of the operating systems for
each node and a cluster software component that is distributed over all
nodes and has a shared state and shared configuration. An external stor-
age subsystem consists of disks that are redundant via a volume man-
ager. Neither the cluster software nor the volume manager is redundant
in itself. (They cannot be, no managing component for them would be
available.)

In fact, there is an additional component, the file system on the stor-
age subsystem, that is not shown in the marketing diagram, but is not re-
dundant either. Many publications on and discussions of high-availability
software ignore the problem that persistent data exists only once in such
a system. The data is switched from one cluster node to the other and any
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logical damage to the data cannot be recovered. For example, errors in the
file system code, or human errors, or errors in the application software.
All of them will render the whole cluster unusable. Chapter 6 reflects
more on the matter of high-availability failover clusters on the operating
system level.

This means that a fault in the high-availability software, faults in the
storage subsystem’s volume manager, and faults in the file system might
all render the cluster unusable. Management components are often the
culprits when we discover single points of failure. This does not mean
that we cannot use that design; first of all, it means that the marketing
information is not the whole truth. We have (at least) three single points
of failure in each standard cluster setup – the real question is how we
cope with them.

There is the simple possibility that we can accept the remaining risk
and live without protection against the faults. Remember that high avail-
ability is fault protection against minor outages, and faults in these com-
ponents will cause major outages since they are single points of failure.
Protection against major outages is possible in the form of disaster recov-
ery. In fact, you are well advised to plan for it, at least for your mission-
critical and business-important systems. This is an advantage of depen-
dency diagrams. By zooming into supposedly redundant components, we
are able to detect single points of failure and we can decide if we need
disaster recovery or if we take the rest risk. Then this decision is made
consciously, and not because of unavailable information.

Storage subsystems and failover clusters have been presented here as
cases for almost-redundant technologies. These are standard technologies
to realize high availability for the operating system level. That shows that
almost-redundant solutions happen to be accepted quite often; this also
appears in many cases in this book. There is a basic truth behind this:

Full redundancy is very hard to achieve!

Therefore many almost-redundant architectures are tagged with the la-
bel redundant even though they still have single points of failure.

In summary, when you analyze a dependency diagram, you will have
to decide if you can trust any outside information about components that
are “already redundant,” or if you need to zoom into these components
and have a deeper look at their parts. In addition, when you discover
single points of failure, you need to decide if you will leave them as is
and handle faults by disaster recovery (or not at all) or if you will handle
them in the high-availability design. On p. 75 criteria for such decisions
are discussed in more detail.
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4.1.3 Robustness and Simplicity

Keep It Simple and Straightforward (KISS) was the guiding principle of
the Apollo project that took humans to the moon. This engineering prin-
ciple also underlies most Internet technologies, founding the networked
world at the end of the twentieth century. It encourages the construction
of robust architectures that have as few elements and interdependencies
as possible and as many as needed.

It is worth pointing out that existing technology has a tendency to for-
get this principle and that it becomes more complex over time. A prime
example is today’s Internet technology. Early Internet protocols prided
themselves on being simple and have that in their name: Simple Mail
Transfer Protocol (SMTP) still rules our mail transfer and Simple Net-
work Management Protocol (SNMP) is ubiquitous in network manage-
ment products. And these protocols are really simple, one can debug them
easily, they are easy to implement and have simple semantics.

Modern Internet protocols do not follow that pattern anymore. Even
though the Simple Object Access Protocol (SOAP) still has the word “sim-
ple” in it, it is a layered specification that reminds us of baroque ISO/OSI
specifications. Several layers in this specification are not even used in
normal applications and are only there to satisfy potential requirements
that are not needed for real-life environments.

To make KISS your guiding principle, you need to ask yourself three
questions all of the time:

1. Is this really needed?
2. Which requirement is fulfilled here?
3. Is there another, simpler, way to do it with sufficient quality?

where “it” and “this” are the component or configuration that you are
designing right now, or where you are working.

When we design something, a few basic principles should be used as guid-
ance:

High intra-component abstraction strength: Make a component do
one thing and do it well. Each component must have a clear objective;
you should be able to express it in one or two sentences. If you can-
not do that, your architecture is probably wrong. This objective is the
responsibility of that component, do not water that down.

Low component coupling: Components depend on others to do their
work. Try to keep these dependencies as few as possible. Do not just
access another component “because it is there.” For every dependency,
there must be a real functional need that is solved and that cannot be
solved internally or with fewer dependencies.
If you have dependencies anyhow, it is better to introduce another
in an already-existing dependency relationship than to create a new
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one. That is, if two components had no dependency relationships up
to now, think hard about adding one.

Create interfaces and obey them: There is a common problem on all
system stack layers above the hardware level – engineers tend to ac-
cess internals of other components and depend on implementation
details in the component’s usage. It might be that internal storage
formats or storage technology is visible at the interface, or that access
cannot be traced, audited, and debugged properly (e.g., access to in-
ternal variables instead of using services or functions). This seriously
hinders future development of your architecture, when the require-
ments change – and requirements will change, all the time.
Therefore, each and every component must have a documented inter-
face, and that interface should be used solely for access to that com-
ponent. While it seems to be a lot of up-front work, it will result in big
advantages in the midterm and long term.

These questions and principles will enable you to create robust archi-
tectures that will stand the test of time. Of course, they are good advice
for any architectural development, not just when you target high avail-
ability and disaster recovery. Nothing here is specific to high availability
and disaster recovery, but it is worth repeating nevertheless as it is for-
gotten or ignored so often.

Redundancy and Simplicity – Contradicting Goals

We have maneuvered ourselves into a contradiction: on the one hand, we
promote redundancy to achieve protection against component failures; on
the other hand, we argue for simplicity since less complex system designs
tend to fail less frequently. But redundant designs have more parts and
the additional burden of a management component, and are therefore
by definition more complex than nonredundant systems. These two goals
obviously contradict each other.

Sometimes the solution consists of managing the failures. When we
can devise a repair or workaround action for a failure, we can handle
incidents that are caused by it, even automatically. For a component, one
might not manage all failures the same way: some failure scenarios are
handled automatically because they will lead only to minor outages; for
some failure scenarios, it is accepted that they lead to major outages, then
failure management often becomes manual.

Looking at practical experience, it is not possible to tell outright if one
has to prefer one goal over the other:

• Network interface cards can be made redundant by supplying multi-
ple cards and managing the duplication in the operating system by a
“multipath configuration.” For many operating systems, current mul-
tipath configurations are more prone to error than the network card
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itself. In such constellations, it is better to leave the card nonredun-
dant and just go on with the simple solution and the remaining risk.
In particular, if some redundancy is planned at a higher level anyhow,
only multipath configurations known to be stable should be used.

• Disk failure is so probable and failure consequences are so grave that
one needs fault protection in any case. Enterprise-class storage sub-
systems provide reasonable redundancy: the disks are redundant, the
volume manager is not. The probability of a volume manager error is
usually negligible.
But this example also shows that one must not make simplistic rec-
ommendations. If you have the requirement that disks shall be redun-
dant and just go out and buy an arbitrary “Raid storage controller”
for disk mirroring and think you have succeeded, you might be in luck
or you might be in for a bad surprise: Some Raid controller/operating
system combinations just do not work well enough, e.g., you do not get
proper notifications about disk outages, or the controller microcode
can crash.

• Database clusters are a technology that is not mature for many prod-
ucts, or where not enough experience exists in many companies. While
one company might choose to utilize redundancy on the database level
by introducing database clusters, other companies are reluctant.
Another choice is database failure management: there are failures
with high probability and low damage, notably not or slowly respond-
ing server processes. Failover clusters can be used to manage such
failures and try several error recovery strategies automatically, among
them restart of the server or switch to another computer system. For
the rest of the failure scenarios, disaster recovery by any means might
be an acceptable solution.

Looking at these examples, a question raises itself almost immedi-
ately: How does one know which variant and which technology to choose?
Well, the answer is straightforward, although not very easy: experience
is the key to success.

Experience Gathering

Either the architect or other subject matter experts have enough experi-
ence themselves to know what works. Or they need to tap the experience
of others and try to capture the “common knowledge” that is available
about technology and components. For example, this book provides a col-
lection of such experience, among other content.

If you have the experience already, that is best, of course. It is quite
natural that experienced architects are drawn to design the mission-
critical systems of a company, and that people with less experience first
need to work in many projects to gain their own experience. But what
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if one arrives in a situation that goes beyond one’s past work scope and
where one has to tackle new dimensions?

One method to handle such situations is to work with consultants that
one trusts. They have the advantage that they do similar work for several
clients and in many environments and can leverage that past experience
for your situation. You should make sure that their design process and
design rationales are transparent for you. It is a very bad situation if
the consultant left your company and you have to cover failure situations
without having realized the trade-offs that were made during the design.

Another method is to look for experience reports. They can be in tech-
nical magazines; the better ones are well known. Or they are personal
war stories from past or current colleagues. That is especially the raison
d’être for user groups that exist for almost any vendor product. To be a
member of such a community gives access to a wider range of experience
than you can have personally. Other experience reports are published and
discussed in Usenet and on Web sites. Usenet is a particular place where
a plethora of technical information can be found, both good and bad. The
good information is in FAQs, or is accompanied by a discussion where the
most sensible arguments in the discussion thread agree with that opin-
ion.

It goes without saying that one has to judge the quality of the infor-
mation source – there are fans out there who will praise a product unre-
alistically, as well as those who bear a grudge against the vendor and will
denounce the product at every opportunity. But both types of person are
mostly easy to detect and their advice can be outrightly dismissed or at
least taken with a very big pinch of salt.

Marketing material and vendor appraisals are never a good source for
experience information. No vendor will tell you that their goods are not
good; they will all tout their own products as the best thing since sliced
bread. You can get factual information from the data sheets, and even
they must be read with caution. Often it is more telling what the data
sheet leaves off than what is on it.

4.1.4 Virtualization

Virtualization is a topic that has accompanied computer system designs
since the start. Depending on the time, most people associated different
things with the term:

• In the 1950s, it was usage of computer systems by more than one pro-
gram: time sharing comes along.

• In the 1960s, it was usage of more memory than is available in the
computer system: virtual memory becomes common.

• In the 1970s, it was independence from the hardware components:
UNIX was rewritten in C, the first portable operating system in the
world.
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• In the 1980s, it was independence from algorithm implementations:
software architectures evolved with new programming paradigms that
encouraged creation of ever-higher abstractions. On the hardware
front, the idea was dormant; this was the age of the PC with its soft-
ware installations bound to specific drive letters.

• In the 1990s, it was independence from computers: the Internet took
off and networked environments were en vogue.

• In the 2000s, a 1960s idea has reappeared with full force and it is
virtual computer systems all over again: virtual hosts promise to rem-
edy the problems that we introduced with the PC architecture in the
1980s.

But basically, it is all the same.

Virtualization is building abstractions and using them,
instead of the real things.

This concept is important, not the specific products or technology that is
associated with it.

We need virtualization to implement redundancy. It establishes inde-
pendence from specific components and allows us to exchange them as
needed, or to locate the service at a different component that provides the
same virtual interface.

When we introduce redundant components into an architecture, we
do it to cope with potential failures of one component. This means that
our component usage must not be bound to a specific instance, otherwise
outage of that instance would render our complete system unusable. In-
stead, a virtual component must be created that conceals the real thing.
That virtual component takes requests and dispatches them; it is able
to change the dispatching according to availability or functionality of the
real system.

Please note this is not only the case for hardware. We use the term
component in a very broad sense. A component is also an operating sys-
tem abstraction like a process or network interface. It may be a logical
database space, or an abstract identifier for a Web service that is mapped
to a specific service end point by some directory system. We meet virtu-
alization in many variants, all over the place on all system stack layers.
In fact, as we have seen, virtualization is one of the basic computer sci-
ence principles that permeate all good designs and will appear in high
availability and disaster recovery as well.

4.2 Solution Roadmap

Up to now, we have learned about the basic principles of good system de-
sign for high availability: categorization in the system stack, redundancy,
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robustness and simplicity, and virtualization. But what does this mean
for you if you are responsible for producing a solution and want to create
the technical system design? Let us assume that you have written down
the business objectives and the business processes that are relevant for
your system architecture. If you want to produce the what and how cells
of the system architecture, you need to proceed in the following steps:

1. List failure scenarios
2. Evaluate scenarios, and determine their probability
3. Map scenarios to requirements
4. Design solution, using the dependency chart methodology
5. Review the solution, and check its behavior against failure scenarios

These steps are not just executed in sequence. Most important, solutions,
requirements, and failure scenarios are not independent. If one has a dif-
ferent solution there might well be different failures to consider. Also,
different solutions come with very different price tags attached. Business
owners sometimes want to reconsider their requirements when they rec-
ognize that the protection against some failure scenarios costs more than
the damage that might be caused by them. Therefore, during each step,
we need to evaluate if the results make it necessary to reconsider the
previous steps’ results. These feedback loops prevent the consistent-but-
wrong design syndrome.

With this iterative approach in mind, let us have a look at each of
those steps in more detail.

4.2.1 List Failure Scenarios

It is not realistic for us to list each and every incident that can render such
complex systems unusable. For example, one can have an outage owing to
resource overload that may be caused by many reasons: too many users,
some software error, either in the application or the operating system, a
denial of service attack, etc. It is not possible to list all the reasons, but it
is possible to list all components that can fail and what happens if they
fail alone or in combination.

So we start by writing up the specific system stack without any redun-
dancy information. Then we list for each component how that component
can fail. The system stack already gives us a good component categoriza-
tion that will help us to categorize the failure scenarios as well. First we
will write up high-level failure scenarios, and then we will iterate over
them and make them more precise by providing more detailed (and more
technical) descriptions of what can go wrong.

Sometimes the owner of a business process has its own failure scenar-
ios, e.g., from past incidents, that it wants to see covered. Usually, it is
easy to add them to the list of generic failure scenarios. That is a good
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thing to do even if they are there already in a generalized form – it will
bring you a better buy-in from that important stakeholder.

Example 1 (Failure scenario for an engineering system). The fol-
lowing list is an excerpt from failure scenarios for an engineering system
that also utilizes a database with part detail information. This is the sec-
ond iteration, where high-level failure scenarios (marked with bullets)
are dissected into more specific scenarios (marked with dashes). The iter-
ation process is not finished yet; the failure scenario list therefore is not
complete and covers only exemplary failures.

But if you compare that list with the one from Table 2.5 on p. 37, it is
clear that this is more structured and oriented along the system stack. It
is the result of a structured analysis, and not of a brainstorming session:

• User- or usage-caused failure
– Deletion of a small amount of data (up to a few megabytes)
– Deletion of a large amount of data (some gigabytes, up to terabytes)
– Utilization of too many resources in a thread-based application
– Flood of requests/jobs/transactions for a system

• Administrator-caused failure
– Deletion of application data
– Deletion of user or group information
– Change to configuration or program makes service nonfunctional
– Incomplete change to configuration or program that makes fail-

ure protection nonfunctional (e.g., configuration change on a single
cluster node)

• Engineering application failures
– Aborting of application
– Corruption of data by application error
– Loss of data by application error
– Hung Java virtual machines
– Memory leak consuming available main memory
– File access denied owing to erroneous security setup

• Database failures
– Database file corrupted
– Database content corrupted
– Index corrupted
– Database log corrupted
– Deadlocks
– Automatic recovery not successful, manual intervention needed

• Operating system failures
– Log files out of space
– Disk full
– Dead, frozen, or runaway processes
– Operating system queues full (CPU load queue, disk, network, . . . )
– Error in hardware driver leads to I/O corruption
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• File system corruption
– Recover by journal possible
– Automatic file system check time within the service level agree-

ment (SLA)
– Automatic file system check time beyond the SLA
– Manual file system repair needed

• Storage subsystem failure
– Disk media failure
– Microcode controller failure
– Volume manager failure
– Backplane failure
– Storage switch interface failure

• Hardware failure
– CPU failure
– Memory failure
– Network interface card failure
– Backplane failure
– Uninterruptible power supply (UPS) failure

• Physical environment destroyed
– Power outage
– Room destroyed (e.g., by fire)
– Building destroyed (e.g., by flood)
– Site destroyed (e.g., by airplane crash)
– Town destroyed (e.g., by hurricane, large earthquake, war)

• Infrastructure service unavailable
– Active Directory/Lightweight Directory Access Protocol (LDAP)

outage, not reachable, or corrupted
– DNS not reachable
– Loss of shared network infrastructure
– Network latency extended beyond functionality
– Virus attack
– Switch or router failure
– Email not available
– Backup server not reachable
– License server outage or not reachable

• Security incidents
– Sabotage
– Virus attacks
– Denial of service attacks
– Break-ins with suspected change of data

You might have noticed that some failure descriptions are quite coarse
and do not go into much detail. Failure scenario selection is guided by ex-
perience, and in particular by experience with potential solutions. When
one knows that all faults that are related to processes will have to be
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handled the same way (namely, the system must be restarted) it does not
make much sense to distinguish whether the CPU load or the memory
queue is full.

4.2.2 Evaluate Failure Scenarios

For each failure scenario, you have to estimate two properties:

1. The probability of the failure
2. The damage that is caused by that failure

Chapter 5 has a section on computation of probability of hardware fail-
ures. But in practice, we cannot determine numbers, neither for the prob-
ability nor for the damage. If we have a similar system running and have
had incidents there, we can use this data for better approximations.

What we can do is to determine the relative probability and the rela-
tive damage of the scenarios and map them on a two-dimensional graph.
Figure 4.10 on the facing page shows such a mapping for selected scenar-
ios.

4.2.3 Map Scenarios to Requirements

Scenarios with high probability must be covered within the SLA require-
ments. All these failures must lead only to minor outages, i.e., to outages
where work can continue in short time frames. Protection against this
class of failures falls in the realm of high availability.

Usually, some of the failure scenarios are expected to lead to no out-
age at all, also to no aborted user sessions. In particular, this is true for
defects in disk storage media that happen quite often. When disks fail,
backup disks must take over functionality without any interruption and
without any state changes beyond the operating system or the storage
subsystem.

Our knowledge of business objectives and processes, i.e., about the
requirements, gives an initial assumption about maximum outage times
per event and maximum outage times per month or per year for this class
of failure scenarios. For example, business objectives would strive for at
maximum 1 min per incident and 2 min per month, during 14×5 business
hours. (As mentioned already in Chap. 1, such measurements are more
illustrative than 99.99%.) Later, when we have seen the costs for such
a solution, the business owners might want to lower their requirements,
then we have to iterate the process described.

There are failure scenarios with low probability and high potential
damage that should be considered as major outages and will not be cov-
ered by SLAs. If we choose to protect against these failures as well, we
need to introduce disaster-recovery solutions.
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Fig. 4.10. Scenario mapping on probability and damage estimation

Again, requirements for disaster recovery come from business objec-
tives and processes. The requirements are expressed in terms of recovery
time objectives and recovery point objectives. For example, requirements
might be to achieve functionality again within 72 h of declaring the dis-
aster, and to lose at most 4 h of data.

At the very end, there are failure scenarios that we choose not to de-
fend against. Most often, these failure scenarios are associated with dam-
age to non-IT processes or systems that is even larger and makes the
repair of IT systems unnecessary. It might also be that we judge their
probability to be so low that we will live with it and do not want to spend
money for protection. For example, while coastal regions or cities near
rivers will often find it necessary to protect themselves against floods,
businesses in inner areas will often shun protection against large-scale
natural catastrophes like hurricanes or tsunamis.

Eventually, such scenario/requirements mapping means categoriza-
tion of our scenario map. We color different areas and tell which kind
of protection we want for these failure scenarios.
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Figure 4.11 takes up Fig. 4.10 and adds those areas. We can also have
two other, similar, figures where we exchange the meaning of the x-axis.
In the first one, we use outage times. Then we can have two markers, one
for the maximum minor outage time and one for recovery time objective.
The locations of some failure scenarios in this graph will change, but the
idea is the same: We can show which failure scenario must be handled
by which fault protection method. The second additional figure would use
recovery point objectives on the x-axis and would show requirements on
maximum data loss.

It is important to point out that the chart has a large area where no
scenario is placed and which is not touched by any of the requirement ar-
eas. We call this area the forbidden zone, as failure scenarios that appear
subsequently must not be located there. If they are, we have to remap the
scenarios and redesign our solution.

There exists the possibility that there is a failure scenario with high
probability and high damage, where the protection cost would be very
high as well. For example, if an application allowed a user to erase several
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hundred of gigabytes of data without being able to cancel the process, and
without any undo facility, this might very well lead to a major outage. In
such cases, the only possibility might be to change the application’s code,
or to select another application that provides similar functionality.

4.2.4 Design Solution

We started with a first approach at a specific system stack and its depen-
dency diagram when we looked at failure scenarios. This diagram is now
developed further:

• Either products for the components were chosen up-front by the busi-
ness owner, or you are able to choose them at will now.

• Each product might introduce new dependencies, in particular, to in-
frastructure services. Do not forget to note them.

• Some products are promoted as redundant. For example, many stor-
age subsystems have mirrored disks (or at least Raid5) and therefore
the vendor names them redundant. For a first analysis, one can mark
these components as redundant in the dependency chart.
Later, one has to draw from one’s experience if one is willing to live
with the single points of failure that are invariably in such compo-
nents. In our storage subsystem example, that is most often the inter-
nal volume manager and the microcode controller.

• Do not forget that there is a difference between storage media (disks)
and storage data (file systems, databases). Making the media redun-
dant still leaves the data unique in your system. While databases are
seldom forgotten, file systems are often seen as a part of the operating
system, but should be seen as separate components from the start.

• Next, we need to determine the single points of failure. For each single
point of failure, we must decide if we want to protect against its failure
and add appropriate redundancy to our system design.
This redundancy often comes in the form of added products that must
be added to the chart as new components. We need to pay particu-
lar attention to the management component of the redundancy rela-
tion which is very often not redundant in itself. For example, if we
introduce a failover cluster for redundancy on the operating system
level, the cluster management component is distributed over all clus-
ter nodes and is not redundant; its failure can bring down the whole
cluster.

• The newly introduced dependencies and components will add addi-
tional failure scenarios. Selection of products might also mean that
some failure scenarios apply only partially. For example, while we
might have “disk failure” as one scenario at the start, we need to dis-
tinguish between “disk media failure” and “disk subsystem failure”
(meaning failures in the volume manager or microcode controller) now.
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We need to go into an iteration of our solution design and write up
those new failure scenarios, evaluate them, and map them to our re-
quirements. This might lead to detection of additional single points of
failure, where the iteration starts again.

• Finally, we need to check the costs of our solution against the benefit
that it will bring. If we do not do so, there might be a chance that
we will have designed a system that fits described specifications, but
not real requirements. Here is the point where a business owner might
want to lower or raise its SLAs, depending on the value of the business
process and the available budget.

• For the remaining single points of failure, we need to prepare and get
management sign-off that the business owner is willing to live with
the remaining risk.

4.2.5 Review Selected Solution Against Scenarios

We had several solution candidates and chose one of them. Now is the
time to check that in order to develop the solution we have not lost sight
of our requirements. Before we start to implement it and invest lots of
resources, we need to review whether the selected solution really fits.

It would be possible to test this, after a solution has been built, but
we get best value for price if we do such a check up-front theoretically,
without any practical tests. A good method to do the check is a review.

Best practice is to let the review be made by an independent party
that was not involved in solution selection or solution design. The re-
viewer may have been involved in other areas of the architecture, e.g., in
formulation of objectives or the conceptual model.

The reviewer will look at each failure scenario and will check if the
selected solution protects against or recovers from those failures. Part
of the review is also to check if the time ranges are realistic, i.e., if the
selected fault recovery can really be done in the required maximum out-
age time. For that, the reviewer must be acquainted with the technology
of high-availability and disaster-recovery solutions, otherwise he or she
would not produce realistic assessments.

4.3 System Solution Patterns

Securing IT services against failure cannot be done without considering
the whole IT process that is needed to keep a service alive.

Enterprise-class IT processes require complex system architecture so-
lutions. Decisions about high-availability usage must consider the whole
set of systems involved throughout the process. To find adequate high-
availability solutions for your own IT infrastructure, it is necessary to
evaluate two aspects:
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1. Which categories of systems are involved in the complete IT process
for a service?

2. Which level of importance or which category of availability is needed
for a service?

With these questions answered, it is possible to follow recommended
patterns about usage of high availability for the categories of systems
involved.

4.3.1 System Implementation Process

System architecture solutions for services follow the demand of IT pro-
cesses. Enterprise-class IT processes cannot only focus on operations of a
service, but must consider all other parts of a software life cycle as well.

The specific system requirements will vary depending on the business,
application and technical demands of a service. In-house development
certainly requires additional extensive IT infrastructure.

However, no complex IT service runs out of the box. Even for commer-
cial products, the IT department will have to implement a service based
on the software bought, which includes configuration, integration into
other business solutions, establishment of data backup, operative backup
solutions, tests, and release cycles.

Though the number of systems may differ, the tasks, the actors, and
therefore the categories of systems involved in establishment and opera-
tion of a service stay the same:

• Development and configuration for new and for upgrade versions
• Tests
• Acceptance by business owners
• Integration into operative environment
• Establishment of failover/backup/disaster solutions
• User training
• Operations

4.3.2 Systems for All Process Steps

As stated before, an IT service depends on more than just its operative
servers. The following categories should be considered for keep-alive sce-
narios of services:

Development systems provide a platform for software development,
modification, and configuration that is completely separated from pro-
duction.
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For complex services, the architecture may differ from the production
setup:
• Service components may share systems that are separated in pro-

duction: e.g., a database is on the local system instead of a central
database host.

• Service components may use different systems that are on the
same host in production: e.g., a central database host is shared
by development systems for different services.

• Service components may be missing: e.g., test of backup mecha-
nisms is not possible.

Functionality and acceptance test systems provide a platform that
is used for testing the application at stable development points. Usu-
ally, one will work with systematic test scenarios here, to cover a spe-
cific range of functionality.

Integration test systems provide a platform for integrating a new re-
lease into the productive environment. The systems must therefore
be as similar as possible to the production systems. Failover and
disaster-recovery tests should be possible, as well as access to copies
of live data.

Staging systems provide a platform for introduction of new releases,
especially to train users. Some functionalities may be deactivated or
simulated only (e.g., billing, accounting, alerting).
Staging systems will often be unified with the integration test sys-
tems, though the two tasks may need careful synchronization (user
activities may prevent system-level tests, backup/recovery tests may
lead to user irritations, etc.).

Production systems run the current release of a service. This includes
failover systems, load-balancing systems, etc. that are operative or in
hot standby.

Disaster-recovery systems take over the services when the production
systems fail. They may have reduced performance, functionality, and
complexity.

In the past, establishing these systems for each project was very ex-
pensive and was only done in special circumstances for mission-critical
services.

But advances in host virtualization and hardware performance make
it possible today to introduce virtual hosts for each system category on
a small set of hardware systems. One can also easily share a computer
system to run virtual hosts for many projects. Therefore, one can assume
that proper system categorization will become a commodity and will be
used for many more situations in the future.
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Table 4.1. Solution approaches for system type and outage categorization. HA
high availability, S standalone, SB has standby

Mission- Business- Business-
critical important foundation

Disaster recovery SB S S
Production HA+SB HA SB
Staging HA+SB HA S
Integration test HA S S
Acceptance test S S S
Development S S S

System Type Selection

We introduced system classes in Sect. 2.2 on p. 17 according to their al-
lowed outage times, i.e., mission-critical, business-important, and busi-
ness-foundation. Each of our system types can appear in one of these cat-
egories, and for each combination we have to select if we really need high
availability for that system, if a standalone system is sufficient, or if we
also need a standby system as a disaster-recovery precaution.

Fault-tolerant deployments of production systems often change the en-
vironment in which an application operates. For example, failover clus-
ters come with requirements for applications that we will present in
Sect. 8.1 on p. 217. Quite often, application developers are not aware of
those requirements or do not obey them consistently. It would be very
nice if the application development happened under circumstances that
are similar to those in production.

On the other hand, operating high-availability environments is addi-
tional work, even with virtual host technology employed. Since such work
is expensive, development-near systems are seldom operated under high-
availability conditions. Table 4.1 presents typical selections for a combi-
nation of system type and outage categories.

4.3.3 Use Case: SAP Server

Finally, to finish this chapter, we look at a possible high-availability sys-
tem design for an SAP server. This scenario combines several often-used
methods and technologies that will be covered in detail in the following
chapter.

We will have a look at a modern SAP installation that includes a Web
front-end and is not restricted to the classic R/3 client. Figure 4.12 on the
next page introduces the three-tier model that underlies such a server
installation. In fact, that model is the basis of many current applications;
therefore, the approach from this scenario can be utilized for many other
scenarios as well.



90 4 System Design

User, with

Web browser

Application

server

Database /

Central Services

Web

server

access

Presentation

logic

Business

logic

Information

store

Fig. 4.12. SAP server introduction. Arrows between servers show request flow

Users access the SAP server with a browser. There is also the possi-
bility to access it by a client program: this utilizes a subset of the same
server installation and can be subsumed in the realm of our example sce-
nario.

Web server is used to realize the presentation logic. It is also known
as the WGate component of the Internet Transaction Server (ITS). No
data and no state are kept here. All user requests are forwarded to the
SAP Application Server, and results are returned and turned into Web
pages to represent them. Of course, these Web pages also have forms
with user actions (buttons, links) to complete the dialog component.

Application Server is used to realize the business logic. It is also known
as AGate for ABAP-based SAP environments, or as SAP Web AS for
Java-based SAP environments. For this scenario, the Replicated En-
queue Server also belongs to the Application Server.
No persistent data is kept here, but user sessions and their respective
transient states are managed. Functional requests are received from
the Web server and results are computed, depending on past actions
and business rules. The computation utilizes the database server and
retrieves or stores persistent information there.

Database server and Central Services are used to store all persis-
tent information in a relational database and hold the message queue.
SAP supports the usage of a wide range of database products, rang-
ing from the open-source SAP DB to IBM’s DB2 or Oracle. In some
SAP variants, the enqueue service also is part of the Central Services,
when no Replicated Enqueue Server is used.
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Fig. 4.13. SAP server system design overview. Not all dependencies to Adminis-
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High-Level Design Decisions

Since the SAP server keeps the financial information of the whole com-
pany, it is a mission-critical system. We do not postulate specific max-
imum outage times or availability SLAs for this scenario; they can be
tailored to typical ranges for that type of application.

Since SAP software does not allow a user to destroy a lot of data, the
business owner decides that errors in the user environment are not cov-
ered. All components depend on the infrastructure environment. That is
seen as redundant already; its failures are beyond the scope of that pro-
ject.

Therefore, we can discard any dependencies from or to components
user environment and infrastructure from our specific systems stack. On
the other hand, administrators can do a lot of damage to an SAP server,
so they are in. Also, failure scenarios with the physical environment (fire,
floods, earthquakes, terrorist attacks) will be handled.

Figure 4.13 gives an overview of the resulting dependency diagram.
Basically, the server installations are at two sites: the primary site is on
the left, the backup site on the right. Server installation at the primary
site shall be redundant as well; this redundancy shall be good enough to
handle minor outages. There will be single points of failure on the pri-
mary site that can lead to major outages; we will have a look at them
later.
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The redundancy shown in this diagram is there to handle major out-
ages and is managed by administrators. Since several of the components
involved are themselves redundant, we have to leave more detailed de-
scription of this redundancy until we describe the respective components.
Only for the database server must data be replicated. For all other com-
ponents, redundancy is achieved by synchronizing software installation
and configuration.

The dependency diagram shows one single point of failure: the ad-
ministration. For our example case, the remaining risk associated with
administrator failures is judged acceptable. Of course, administrators
are required to be careful in their work, but additional safeguards (e.g.,
mandatory four-eyes principle for every configuration change) are not es-
tablished. Their associated costs are deemed too high.

An important tidbit of this dependency graph is the way that we rep-
resent the dependency between the three SAP server types. The obvious
choice would have been to take the request flow arrows from Fig. 4.13 on
the previous page and use them literally as dependencies. Instead we in-
troduce a new component named “SAP service” that depends on all serv-
ers. This way the dependency diagram represents directly the fact that
an outage of one server makes the whole SAP service unusable and that
all server configurations must be orchestrated to match the demands of
the SAP service. It also gives us the opportunity to express the manage-
ment of redundancy for the SAP service – administrators might need to
change the overall configuration to make the SAP service functional on
the backup site.

Last, but not least, it gives prominent notice that this is about the SAP
service in the end, and not about three servers that are dependent in some
way. Failure in the SAP service component occurs when the orchestrated
“working together” of the three server components is not done correctly,
supposedly through a software error. For example, though it is not prob-
able, an error in the code could delete the whole database, leading to a
major outage that cannot be handled by the database server redundancy
anymore.

To handle failure in this component completely and achieve full redun-
dancy, care must be taken that the same software error is not repeated
at the backup site; this will be the responsibility of the administrators.
That failure scenario illustrates why switches to the backup site often
need some time and are not a matter of simply switching on the backup
system. When a major outage happens, one needs to analyze the failure
situation and understand what has happened and why. Otherwise that
failure situation could be repeated at the backup site – and we do not
yet have another backup; utilizing the existing backup site for disaster
recovery will be the first and last attempt that must succeed.
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A Closer Look at Server System Design

In our overview dependency diagram, we noted that each server on the
primary site is redundant itself and has a nonredundant server on the
backup site as redundancy for major outages. Let us have a look at each
of those servers in more detail.

When we zoom into these redundant components, we will see that each
and every component will have single points of failure. In fact, we could
subsume them all under the heading of almost redundant, as discussed
on p. 71. On the other hand, when we look at the higher-level design
decision that the redundancies at the primary site shall protect against
minor outages and that a backup site is available for disaster recovery,
we can achieve failure handling for the remaining single points of failure
in that way. Of course, the remaining single points of failure are named
for each specific system.

Web Server

Web servers in an SAP installation do not hold any state. That is the
ideal situation to utilize load-balancing cluster technology. That technol-
ogy is described in Sect. 6.2 on p. 176. It protects against outages on the
operating-system and hardware level. When an outage occurs, the load
balancer notices the nonreachability of the respective computer system
and does not forward any requests anymore. Appliances are used as load-
balancer components, to protect against their outages, and appliance-
specific redundancy is utilized. This means that an appliance cluster
manages the Web server cluster.

Figure 4.14 on the next page illustrates that design. Remaining failure
causes could be in the Web server’s code or configuration, and in the load-
balancer cluster management itself. Outages in one of these single points
of failure is extremely seldom and therefore a risk that can be taken for
normal operations. When it happens, it will be a major outage since it
will bring down the whole Web server as well, and disaster recovery shall
kick in. For that case, we introduce redundancy for the Web server via
administration. In the case of outages in this device or software, admin-
istrators will have to look at the failure causes and will have to bring the
Web server at the backup site up and running – without running in the
same failure situation.

Please note that we do not use redundant hardware. Since the Web
servers do not have any data or state, we can utilize several cheap in-
stallations and let the load balancer handle outages. In fact, such designs
often involve more than two Web servers. This is not taken up here since
it would complicate the presentation without any additional benefit.
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Fig. 4.14. SAP Web server design

Application Server

Both SAP AGate and SAP Web AS have built-in cluster capability. They
are examples of middleware software products that deliver fault tolerance
without the need for third-party software. Such fault-tolerant middleware
software is the topic of Chap. 7. Figure 4.15 on the facing page illustrates
that design choice.

Usage of that technology protects against failures on the operating-
system and hardware level. Within limits, it also protects against errors
in the Application Server, namely, when the failure is caused by previous
application states and can be remedied by starting the session anew. This
is handled in a transparent way by SAP, the end user does not notice
reconnection of the client and restarting of the session.

There is a variant of the SAP Enqueue Server with built-in clustering
capability too. If that product is used, it belongs to the Application Server
as well from a system design point of view, as its high-availability tech-
nology is the same. It also has fully transparent support for transaction
resets in the event of enqueue service failure.

Other issues with the application server software will lead to a ma-
jor outage; our disaster-recovery solution must handle these cases. For
that, we introduce backup servers and manual management of that re-
dundancy, as with the Web servers.
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Fig. 4.15. SAP Application Server

Database server and Central Services

For the database server and the Central Services, a failover cluster on the
operating system level has been selected. For Central Services, there is no
other possibility. Since one uses it already, one can handle the database
server redundancy with it as well.

If performance is not sufficient, usage of a specific database cluster
would be possible, but most of the time, the simple failover cluster is suf-
ficient.

An external storage subsystem is used that is already redundant. Fig-
ure 4.16 on the next page presents the resulting design.

Failover clusters on the operating system level protect against failures
in the operating system, the hardware, and against some database errors.
The are discussed in detail in Sect. 6.1. As with the Web and application
servers, disaster recovery is used to protect against the remaining failure
scenarios. Since storage is so important, disk failures are very probable,
and redundant storage subsystems are a commodity nowadays, we also
use them on the disaster-recovery site.

There remains the question of data replication to achieve redundancy
for this part of the architecture. The storage subsystem is deemed to be
redundant. But the caveats from p. 72 that those systems still have their
single points of failure remain; therefore our design does not utilize a
storage-based replication technology like WAN mirroring. Instead, data-
base data are replicated logically by redo-log shipping that is applied with
a delay to be able to skip commits of faulty transactions. The messages
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Fig. 4.16. SAP database server

that are maintained by Central Services are also stored in the database;
therefore, no special replication method is needed for them. If the print
output spool (e.g., invoices) is placed on file storage and not in database
tables, we can utilize file replication for them.

Therefore, actual disaster recovery involves database administrators
who will analyze the redo logs and make sure that the error situation of
the primary site is not replicated at the backup site. Chapter 10 presents
this method in more detail.

SAP Server System Design Pulled Together

Finally, Fig. 4.17 on p. 98 pulls together the high-level and the detailed
design decisions that were presented in this section. This diagram is
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not complete and shows the problems of large dependency diagrams that
shall present the essential points without getting bogged down in details.

• Some dependencies are not shown. In particular, there are many more
dependencies to administration than the diagram is able to express
and still be readable. After all, almost every component in that dia-
gram must be administered somehow, even the physical environment.
Only the most crucial dependency is shown that is specific for this
installation.

• Some redundancy relations are not shown. For example, the Web and
application servers on the primary and on the backup site are re-
dundant via administration. Only the redundancy that involves data
replication is shown.

According to this dependency diagram, the only remaining single
point of failure is the administration component. However, more detailed
analysis of the products used would be needed to confirm that there are
no hidden single points of failure. There are still remaining risks with
application errors that software problems will occur both at the primary
and at the disaster-recovery site. But the remaining risk is very small
and we have here a very sound system design that will provide IT service
continuity both for minor and major outages.

One can go even further and tackle the remaining risk that lies mainly
with potential failures of system administrators. That can be done with
skill assessments, only letting people with a proven good track record do
administration work, better work procedures, establishment of the four-
eyes principle for changes, and other process-oriented improvements.
With proper processes in place, and good people working as administra-
tors, the remaining risk is negligible.
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Hardware

In this chapter we talk about hardware, how to protect against failures
or how to minimize them if total protection is not possible. We obviously
do not build any hardware, but we select products and components which
we configure to build our systems.

Hardware components are the most basic building blocks for com-
puter systems. Handling their failures and outages was the first objective
that was realized in high-availability installations, when failures in other
system-stack components were not (yet) handled. Therefore it is also the
most mature technology with the most widespread availability of ready-
to-buy solutions and products.

As with all other component categories, redundancy and robustness
are the basic approaches that are used to achieve high availability for
hardware components. Both approaches contribute to increase the relia-
bility of those components and complete systems, realizing high availabil-
ity and disaster recovery.

The maturity of the system-stack hardware layer can be seen in the
fact that hardware is the only area where quantification of reliability is
available. This is the only area where we can really compute the prob-
ability of failures and plan in advance how to handle them and which
resources must be made available for that. Appendix A introduces the
theory behind reliability computation and shows how that can be used in
real environments.

Another sign of that area’s maturity is that it not only concentrates
on recovery from failures, but also on protection against failures. This
is particularly true for disk drives, which are the most probable source
of failures, owing to them being high-end technology and having moving
parts. For them, standard technology allows disk failures to be handled
in a way that is completely invisible for the end user: no outage is recog-
nized. Most other redundancy technologies do not protect against systems
or application crashes and “just” realize proper continuation of service af-
ter a restart.
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This chapter introduces the most important hardware components
and also management and operational issues that are needed to achieve
high availability on the hardware level:

• Components and computer systems will look at the different hard-
ware components in computer systems and will show high-availability
options that are available for them, in Sect. 5.1.

• Disk storage is presented in Sect. 5.2 and will pull together all infor-
mation about that area. That will not only cover disks themselves, but
also complete storage systems as well as a discussion of storage area
networks (SAN) vs. network-attached storage (NAS).

• Virtualization is a property that is needed all the time to realize high
availability for hardware components and is presented in Sect. 5.3.

• Vendor selection is the topic of Sect. 5.4; while it is not possible to
recommend specific vendors in this fast-moving industry, we will see
general criteria that help with purchasing decisions.

• The system installation can make a computer system available in
the long run or can cripple its reliability; that is explained in Sect. 5.5.

• System maintenance is the next straw, after a successful installa-
tion. As Sect. 5.6 shows, it can make the difference between keeping a
system running or seeing it fail all the time.

• High availability is also the quest for ongoing improvements. Own
statistics are a prerequisite for qualified decisions and Sect. 5.7
shows how to gather them.

But before we go into the details of high availability for hardware com-
ponents, let us review the evolution of systems and their features. The
two driving factors are improvements in silicon technology (i.e., chips)
and disk drive technology. Both show exponential increases of several
features over the last few decades. The best-known example is Moore’s
Law, which was stated by Gordon Moore in the 1970s. Moore observed
that the number of transistors in an integrated circuit doubles every
24 months.1 He analyzed future potential improvements and predicted
that this growth will continue in the foreseeable future. The amazing fact
is that his prediction has held pretty well for more than 30 years until
today. Moore never named his prediction a “law,” but today it is always
referred to as “Moore’s Law.” To illustrate its power, the first microproces-
sors came out in the 1970s and had a few thousand transistors, whereas
today chips have billions of transistors, a factor of millions in complexity!

A similar observation was made by Kryder about the information den-
sity of disk drives (bits per area). He saw an even faster growth rate than
Moore did for chips.

1 His statement is sometimes cited with a doubling rate of 18 months; however,
the exact number is not important to our discussion.
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Table 5.1. Comparison of different growth rates based on Moore’s Law and Kry-
der’s Law.

Yearly increase (%)

CPU complexity 50
Memory capacity 60
Memory speed 10
Disk drive capacity 60
Disk drive speed 25
Network bandwidth 40
Network latency 0

So far so good, we should be happy that everything gets faster, bigger,
and cheaper. The important point is that different features have different
growth rates, which lead to a change in bottlenecks and overall system
behavior. Table 5.1 shows some features with different growth rates. The
growth rates given there could be debated – they depend on the time
interval considered. For our context the results do not change if the num-
bers change by some percentages.

Let us first consider CPU complexity, memory capacity, and memory
speed. More memory allows us to work on larger amounts of data or could
be used to improve disk performance by using it for caching. The higher
CPU complexity allows for faster CPUs. But the issue is that memory
speed does not grow evenly fast. That resulted in large memory caches
which sit between the CPU and the main memory. Some systems have
a three-level hierarchy of caching, where the first two levels are mostly
located on the CPU chip. This led to the fact that most of the transistors of
a CPU chip were used as a cache. Over time the gap grew so much that a
different approach was chosen: instead of “wasting” all the transistors as
cache, multiple CPUs were built into a chip. The idea behind this is when
one CPU waits for data coming from memory, the chip switches to the
next CPU to execute other code. This works well when the workload can
be parallelized (i.e., multiple processes or threads which can be executed
independently) and if the requirements for memory bandwidth are small.
That concept allows us to limit the size of the caches and lets the single
CPU wait longer as more data need to come directly from or go to memory
(i.e., worsening memory latency), but the waiting time is used for work
by other CPUs in the chip. How far this concept works is unknown today;
however, vendors experiment with chips that have many CPUs.

There is an imbalance between capacity and bandwidth. The chips
deliver capacities that cannot be used to their full extent because the
interfaces and bus systems do not have enough bandwidth to access all
transistors as needed. This introduces the tendency that we will change
buses and add more memory chips just to get more and wider interfaces,
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to yield higher bandwidths. These additional chips will add even more
capacity that we will not use properly, but that is not the point. Adding
these chips is triggered by the hunger of the CPU chips for memory band-
width, not by the additional capacity.

Of course, adding more components increases also the probability of
errors. This is not made smaller by the capacity increase of each chip that
is realized by increasing the density. Just by the nearness of the transis-
tors on one chip, the probability of failures on the transistor level is in-
creased. Chip vendors conquer that problem by better production quality
management and by adding internal redundancy, to get a reliability that
is as high as or even better than that of chips of previous generations.

A similar effect comes from the imbalance of disk speed versus disk size.
Relative to their capacity, drives are becoming slower and slower. This

means that the time to write or read a whole drive is getting longer and
longer. Also the larger amounts of data (coming from bigger memory as
explained earlier) require more disk speed than the individual drives can
provide. This leads to the need for wider and wider stripes, with the neg-
ative consequences for reliability as discussed in Sect. 5.2.1 and App. A.

A consequence of this trend is that components change their roles over
time. Let us compare servers 20 years ago with those of today:

Disks ⇒ tape: They have become more and more sequential devices
which store bulk data. Their random access time has become worse;
their bandwidth has increased by utilizing striping. Many databases
are stored in memory to a major extent – access to the disk is only
seldom needed, like for a full table scan. Because of the long access la-
tency, sophisticated read-ahead and write-behind algorithms are used
to “hide” disk access by utilizing the high I/O bandwidth.

Memory ⇒ disk: Random access latency and huge size allows memory
to play the role of disks 20 years ago.

Cache ⇒ memory: But only caches have an access latency of a few CPU
cycles which gives them the role memory had before. Because the rel-
ative size of a cache compared with that of main memory gets smaller
over time, other technologies are needed, like multicore CPUs or mul-
tithreading.

Figure 5.1 on the facing page illustrates the power of exponential laws
and how the imbalance between size and speed grows over time. It shows
that the time to read or write a whole disk drive takes exponentially
longer over time: If a disk bought at year 0 takes time 1, then the newest
model bought in year n+5 will take 4.5 times longer. With memory it is
even worse: here the factor after 5 years is 7.6.

Finally, let us see what consequences this development has for high avail-
ability of hardware components, and their realization by redundancy and
robustness:
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Fig. 5.1. Evolution of imbalance between memory capacity vs. memory speed
(solid line) and disk capacity vs. disk speed (dashed line)

• Redundancy for disk drives means replication of data. But when a disk
drive is replaced after a failure, that data must be restored to the new
disk. Since the time to read and write whole disks gets longer every
year, the resynchronization time will be longer as well – this means
we will need longer to achieve redundant operation again. In effect,
this means that the mean time to repair increases and the availability
decreases.

• To compensate for the (relatively slower) disk speed, the data on one
storage volume is distributed over more disks. This is called striping
and is explained in more detail in Sect. 5.2.1. Utilizing more disks for
one volume increases the probability of failures for that volume and
thus decreases the overall reliability.

• A similar argument holds for memory chips. As outlined before, more
memory chips and more connections are needed to feed CPUs with
data. More parts increase the probability of failures.

• Larger memory capacity requires more time to read the whole mem-
ory. This will slow down the boot process if memory checking is en-
abled, and increase the time to write a dump after a system crash.



104 5 Hardware

We see that improvements in chips and disk drives change the behav-
ior of computer systems. This requires rethinking of configurations and
operational procedures over time.

5.1 Components and Computer Systems

Even in today’s state-of-the-art computing systems there are single points
of failure like CPUs or the backplane.2 The memory can be made redun-
dant. The reason why they cannot protected by redundancy is that there
is no independent management component available which could discover
failures and activate backup components, see Sect. 4.1.2. For example,
there is often no layer between a CPU and the operating system.

If we plan to purchase a new system, failure scenarios need to be con-
sidered and reviewed with the vendor’s documentation to determine how
they can be approached. Different vendors have different reliability fea-
tures implemented in their systems; therefore we need to walk through
the major components and point out the most important high-availability
features to look for.

� CPUs

Some systems have a layer between the CPUs and the operating system,
and this is sometimes called hypervisor. In this layer some errors can be
managed and a CPU can be deactivated without a system crash. The ap-
plication that uses the CPU at this time will probably crash nevertheless;
that failure must be handled on a higher level in the system stack. But if
the failure happens when the CPU executes operating system code, this
failure scenario usually cannot be recovered at all, and the whole com-
puter crashes.

Hypervisors do not provide fault protection or transparent failure re-
covery. If there is a CPU error, the end user will recognize it, because
either the application or the whole system aborts. The goal of hypervisors
is to restart and continue operation after such a failure has happened.
For instance, such a system can reboot in a “degraded mode” after a CPU
failure, with the failed CPU deactivated.

� Memory

As discussed at the beginning of this chapter, chip density is increasing
exponentially. The number of memory chips in a system might increase
as well to adapt to raising bandwidth demands – of course not as fast
as chip density. This gives an increased number of failure scenarios from

2 There are some exceptions which can partially deal with such failures, like HP
NonStop servers or IBM mainframes, but even these are not protected against
all kinds of failures, and they are not the subject of this book.
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single bit errors to chip failures. Vendors have added error detection and
correction mechanisms to their memory subsystems. This is done with
technologies similar to redundant array of independent disks (Raid) for
disk drives.

All systems should detect and correct single bit errors and detect mul-
tiple bit errors.

Modern computers can survive failures of a whole row or column
(memory is organized as a matrix of bits), a whole chip, and sometimes a
whole memory card (dual in-line memory module, DIMM). This requires
the use of parity bits on multiple levels up to mirroring of the whole mem-
ory.

A technology called memory scrubbing tries to identify soft errors by
reading in the background while memory is idle. If a threshold of soft
errors is exceeded, the part affected can be deactivated before a real error
happens.

We strongly advise reviewing the memory redundancy features of a
system, especially if it has high capacity.

� Backplane and System Bus

These are the connectors at the heart of a system. Their ability to recover
from failures is limited; a failure in the backplane typically causes a sys-
tem crash. A reboot is often not possible, as there is no “degraded mode”
possible without the backplane.

The only thing we can look for to identify a stable backplane or system
bus is simplicity and robustness. This means no active components (this is
commonly called a passive backplane), no cables, and mechanically robust
connectors with a limited number of pins.

Systems which do not pass these criteria cannot be expected to run
reliably over a long time. To illustrate the point we look at a negative
example (the vendor is out of business today). The connection between
the active backplane (bad) and the CPU and memory cards was imple-
mented via cables (bad), which had several hundreds of connections (bad)
on an area of about 4×10cm2. Many maintenance activities are required
to unplug and plug these connections (bad). This system had a rating of
four “bads” and never ran stably.

� I/O and Network Cards

Now we have arrived at the less critical components. I/O and network
cards can be made redundant. The operating system manages redun-
dancy and handles failures at that level.

Such cards can often be replaced without service interruption (hot
plug), but this feature does not appear to be robust yet. We propose test-
ing it under load conditions before we need to do it in production environ-
ments without experience.
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� Power Supplies

These devices should be simple, robust, and easy to make redundant – a
no-brainer. Servers have more than one power supply. They are typically
installed in an n + 1 configuration, where for n active power supplies,
one additional backup supply is available. With such a configuration, one
productive supply can fail without service interruption.

Power supplies need heat dissipation, which is today mostly done with
fans. Because fans have moving parts, they happen to have a lower reli-
ability than many other hardware components; causing power supplies
to fail as well more often. In the end, they can cause system crashes, or
even smoldering fires. For mission-critical servers, n+ 1 configurations
are often not deemed reliable enough, and n+2 configurations are used.
Here, two backup power supplies are available and the whole component
remains redundant even when one productive supply fails.

It is important to realize that power supplies can cause problems if
they are not properly installed (e.g., not connected to independent power
sources), failure detection does not work well (e.g., it is detected that one
supply failed but not which one), or if one electrical short circuit can de-
stroy multiple supplies.

We can expect that mature products should not show such problems
anymore. It should be verified that the identification of a failed supply
works and is integrated into our monitoring procedures.

� Cables and Connections

Cables and connections are the enemy of reliability. They are the place
where intermittent problems or repeated problems with different failure
patterns appear that are a horror to analyze and repair. They are very
hard to identify, especially as every activity on the hardware could change
the failure pattern. A good measure of the quality of a system is therefore
how many cables it contains (internally and externally).

Our only advice is to look for systems with the minimal number of
cables and simple connections.

If we work with clusters of systems, the situation with cabling can be-
come worse. When many nodes reside in one rack, the amount of cabling
can become enormous. Here specially prepared clusters can simplify the
cabling significantly. Such cluster systems are called blades.

They are marketed with the argument of higher computing density
per room space, but from the high-availability viewpoint their real ad-
vantage is the severe reduction of cabling in their installation.

An example of a problematic configuration is the card-on-card archi-
tecture. In that architecture, interface cards are not connected directly to
the backplane. This might be because they are too small, e.g., Fibre Chan-
nel cards. Or one wants to use standard Peripheral Component Intercon-
nect (PCI) cards, and the backplane of high-end servers have no PCI bus.
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Then an intermediate (big) card is attached to the backplane, and the ac-
tual (small) interface cards are connected to this intermediate card. Such
a configuration often comes with problems in failure identification when
some connections do not work as intended. It needs very high production
quality and the simplicity of the connections must be sufficient, otherwise
such systems must be rated as bad.

When we have eventually decided on a vendor and a configuration, the
next challenge comes up: system installation. We will have more to say
on this in Sect. 5.5 and will just mention the important issue of cabling
here. There is an incredible spectrum of quality in technicians who install
systems, even if they come from reputable vendors. Both a good and a bad
installation work in the beginning, but the bad one can and, according to
Murphy’s Law, will eventually make trouble.

Therefore we need to review the installation using the following little
checklist:

• Do the cables have the right lengths (not too short, not too long)?
• Are they labeled?
• Do the texts on the labels have a meaningful scheme?
• Are the labels properly mounted (or do they fall down after a few

weeks)?
• Do the cables have proper strain relief?
• Is the cable routing done properly?

All these questions sound obvious and trivial, but reality has proven, they
are not!

Hardware Repair Activities

All hardware repairs can solve problems and create new ones. Especially
work on productive system which are not redundant is a big risk. Take
replacement of a failed power supply in an n+1 configuration as an ex-
ample. With no redundancy available anymore, the technician can pull
the wrong (still working) power supply, and that will crash the system.

Another frequent source of errors is carelessness, e.g., when cards are
not pushed straight on their connectors. Pushing them slanted may de-
stroy some connector pin, again rendering the replacement component or
even the backplane connection unusable.

The only thing we can do about this is to only let well-trained techni-
cians do the work. Some companies do a “skill assessment” before they let
somebody do work on their systems. This is similar to a driver’s license.
Unfortunately there is no generally accepted certificate for technicians;
we are on our own with this risk.
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5.2 Disk Storage

Disks are one of the most important parts of a computer system as they
store the data, application programs, and operating systems. Owing to
the data storage they are the most important hardware component of all –
without that information, no IT-dependent business process can continue.
Disk drives have moving parts and are high-end technology. Therefore
they are the hardware component with the lowest reliability. That means
most hardware errors are disk errors.

Since disk errors are so probable and disks are so important, the early
users of the relevant high-availability technology thought that failure re-
covery was not sufficient and strived for fault protection instead. Redun-
dant disks provide multiple storage of data, and that is discussed in the
following sections. If a disk drive fails and is replaced with a new one,
its content needs to be copied to the replacement disk. It requires some-
what complicated mechanisms to handle disk failures transparently to
the upper levels in the system stack.

Before we discuss the various protection methods, let us consider the
two major categories of disk storage:

Data disks This is where all our application data is stored. They are
located in files which reside in file systems.3
Data disks have the special property that their replication and thus
their redundancy has limits. Information that is stored there is only
available once, and must be changed consistently. Therefore even with
replicated data, some mechanism must exist that manages that repli-
cation. When this mechanism fails or some other failure happens on
a higher level in the system stack, the content of the data disk can be-
come corrupted and unusable. Therefore data disks carry always one
of the highest risks in any system.
An important question is how large should the file systems be? We
should always consider that a file system might crash and cannot
be recovered. If we have a logical copy on another system (like a
standby database) this failure should not be an issue. But if we de-
pend on that file system, we need to recreate and restore the data
from a backup, which also can cause data loss. This will mostly end
up in a major outage. Therefore the file system size must be small
enough that the restoration time is acceptable. Even with a high per-
formance backup/restoration system, it is not advisable to go over a
few terabytes.
The use of snapshots can also help with this issue.

Operating system disks Todays disk drives are far too large to only
hold the operating system; therefore, it makes sense to use the same

3 The use of a raw device to store databases is being used less and less. It is more
difficult to operate and brings only a minor performance advantage.
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disks for the root file system and the swap space. A typical config-
uration contains four disk drives: disks 1 and 2 for root/swap and its
mirror, disk 3 is a hot spare and disk 4 holds another copy of root/swap
for testing purposes (e.g., to test a new patch).
Mirroring root disks is sometimes tricky on some systems. It must be
possible to boot the system with only one disk, if it crashed during
a nonmirrored situation. This is mature technology, but needs to be
prepared and tested.
We propose always using local disks for the operating system. It is
possible to boot via a SAN or over the network using Internet SCSI
(iSCSI). However, for real missing critical servers the simplest and
most robust solution is the best.
There is an exception if a vendor provides an integrated solution with
this functionality, especially for small and medium-sized systems. An-
other reason to use a SAN or an iSCSI connection is the extensive use
of host virtualization. Then we typically have to manage many oper-
ating system instances, all with their own operating system. In this
case we need a management function for all the images, and often
works using a SAN or iSCSI. This technology provides lots of flexibil-
ity and many other advantages, but the additional level of complexity
needs to be understood.

5.2.1 Raid – Redundant Array of Independent Disks

Disk drives used to be large (some hundreds of kilograms), expensive
($10 000+), and had little capacity (a few gigabytes). The disks were often
not protected and if one broke, data needed to be restored from tape. In
accordance with Moore’s Law, disks became small, cheap, and of high ca-
pacity. The concept of a redundant array of inexpensive disks (Raid) was
invented.4 This technology, combining multiple disks to improve redun-
dancy (and also performance), is a key technology nowadays – we need to
understand it in some detail to configure our systems. Several physical
disks are combined to build a “logical” one, often named a Raid group.
Figure 5.2 on the next page illustrates how the logical disk is seen by the
computer system; it is a layered model, as we find it in many other places
in this book.

There are different Raid configurations (sometimes called Raid levels)
which need to be discussed, before we explain the risks and pitfalls we
need to overcome in practice. They all follow the same idea: the data of
one I/O request (read or write) coming from the computer system are sent
to the Raid group and are distributed there to multiple disks enriched
with redundant information to provide protection against disk failure(s).

4 Later renamed to redundant array of independent disks, which sounded more
respectable.
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Block size

d1 d2 d3 d4  . . . dn

Fig. 5.2. Illustration of a virtual disk with its blocks, as seen by the computer
system. Redundant array of independent disks (Raid) levels differ in how these
blocks are mapped to blocks on the physical disks

If a disk drive fails, the redundant Raid group is able to reconstruct
the lost information. It does this on-the-fly without disruption, but possi-
bly with performance degradation. During this time the Raid group runs
in a degraded mode, because now there is no (or less, in the case of Dou-
ble Parity Raid, RaidDP) protection. To minimize this time, so-called hot-
spare drives are used. Those are disks which are already installed and
running, but they are not used and have no data on them. Their only
purpose is to immediately jump in if a productive drive fails. Now the
information on the failed disk needs to be reconstructed by using data
from the surviving disks. Of course, the hot-spare disk will not be ready
immediately and redundancy will only be reestablished after the recon-
struction. This will take several hours for current disks.

Example 1. To illustrate how the reconstruction of data works, let us
take a Raid group consisting of four disks for data and a fifth one stor-
ing the redundant information, called parity. The parity is calculated by
using the exclusive or (XOR)5 function between the corresponding bits on
the data disks and storing the result on the parity disk.

In Fig. 5.3 on the facing page we show the parity calculation for 1 byte
of data on each disk. How can we reconstruct the data if a disk fails?
We just calculate the parity between the remaining disks plus the parity
disk. If, for example, disk 2 fails, we see on the right-hand side of Fig. 5.3
how it works.

One advantage of using parity for redundancy is that it works with an
arbitrary number of data disks. The disadvantage is that after a disk
failure, all remaining disks need to be read in order to rebuild the data
and write it to the hot spare.

5 XOR is calculated by counting the number of 1’s. If this is odd, then the result
is 1, otherwise 0. For example, 1 XOR 0 XOR 1 XOR 1 = 1.
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Disk Byte

1 1 1 0 0 1 0 0 1
2 0 1 1 0 1 1 1 0
3 0 0 0 1 0 0 1 1
4 1 1 1 0 1 0 1 1

Parity 0 1 0 1 1 1 1 1

Disk Byte

1 1 1 0 0 1 0 0 1
Parity 0 1 0 1 1 1 1 1

3 0 0 0 1 0 0 1 1
4 1 1 1 0 1 0 1 1

Reconstr. 2 0 1 1 0 1 1 1 0

Fig. 5.3. Parity calculation of four bytes (left) and reconstruction of data on disk 2
using the parity information (right)

Let us now take a look to the relevant Raid configurations.6 Ap-
pendix A.4 goes into much more detail, and there we will learn about
the influence of different disk configurations on reliability computation.

� Raid0 – Striping

Raid0 is not one of the original Raid levels. It is not a configuration for
redundancy but for performance. In fact a stripe has a worse reliability
than a single disk. It is advisable to use stripes without further protection
only for temporary data like scratch files. This combines several disks to
one stripe with the goal that the I/O load is evenly distributed between
the disks. There two parameters which describe a stripe: the number of
disks (also called stripe width) and the number of bytes written to a disk
as a chunk. Those chunks are distributed between the disks. Figure 5.4
on the next page shows a four-way stripe (a stripe with the stripe width
of four disks) and how the blocks of the corresponding virtual disks are
mapped to the physical disks. The stripe size is a parameter for perfor-
mance tuning; it typically can vary between 2 KB and some megabytes.
Its influence on overall performance is significant; differences between
a bad and a good stripe size can be an order of magnitude. The optimal
value for the stripe size depends very much on your load profile, mostly
on the size of the I/O requests, random vs. sequential I/O, and concurrent
vs. single-threaded I/O.

Example 2. Assume we have a stripe of four disks and want to store files
of sizes between 4 and 400 KB. The I/O size from the computer system
is 16 KB. See Fig. 5.5 on p. 113 for a comparison of two different stripe
sizes (8 and 64 KB). The 8-KB case has the advantage that all disks are
mostly evenly used, and the disadvantage that file f2 is spread in four
slices on each disk (in the case of 400-KB files each file would be split into
50 chunks). At a stripe size of 64 KB, file f1 is on one disk only and file f2
is split onto two disks. The advantage of this configuration is minimal

6 We leave out Raid2, Raid4, and proprietary Raid levels, as they are not relevant
for this book.
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stripe

Fig. 5.4. Four-way stripe. Mapping of the virtual disk to the physical disks

head positioning overhead; the disadvantage is that the disks are not
evenly used (file f1 is on one disk only, file f2 uses two disks). In this case
the optimal stripe size would be somewhere in-between; we would chose
16 KB.

To identify the optimal stripe size we need to find a compromise between
minimizing positioning overhead (large stripe size) and transfer band-
width (small stripe size). If we have lots of concurrent I/O requests, a too
small stripe size would create too much disk positioning, as most file ac-
cess would access multiple disks. If we have only single-threaded I/O re-
quests, the stripe size should be the I/O size divided by the number of
disks; this configuration is sometimes called thin stripe. The I/O size is
another tuning parameter which is set on the computer system (at the
volume manager, database). Its default value is often too small, and too
many small requests create an unnecessary overhead.

� Raid1 – Mirroring

This is first – and simplest – level for redundancy: all data is written to
two drives as shown in Fig. 5.6 on p. 114. Mirroring is a simple and robust
technique – all I/O requests are just duplicated; this minimizes overhead
and provides good performance.

Mirroring can decrease write performance slightly as twice the amount
of data needs to be transferred. Read performance is increased, close to
doubled, as two disks are available for reading – this helps mostly for
concurrent small requests.

If one disk fails, performance is degraded to one disk. Mirroring shows
a quick rebuild; the remaining disk just needs to be copied to the hot
spare. Write requests improve rebuild time.
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Fig. 5.5. Four-way stripe. Data layout of two files f1 (14 KB) and f2 (120 KB).
Comparison between two stripe sizes: 8 and 64 KB

� Raid3

Raid3 uses so-called byte-level striping with a dedicated parity disk.
Each single I/O request is distributed over all data disks. This can be

seen as a stripe with stripe size 1 byte (sometimes a few bytes) plus the
parity.

The performance of Raid3 is very good for large, single requests, as
all disks are used equally. On write, parity information can always be
calculated using the data of the I/O requests – no information needs to
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Fig. 5.6. Mirror of two disks

be read from the disk. On read, the parity can be read together with the
data and used to verify data integrity; this does not cause an additional
delay.

On small and concurrent I/O requests Raid3 becomes very slow, as it
uses all drives for each single request, and no load balancing between
requests can take place. If requests are small, the disk positioning time
can dominate, as it needs to wait until the last disk drive has processed
the data.

Raid3 is very good for media streaming, backup-to-disk, and file serv-
ing of very large files.7

To reconstruct a failed drive, all the data needs to be read, which
makes reconstruction much slower than with Raid1. The combined band-
width of all disks is so large that it is larger than available bus band-
width. Even though all disks are read in parallel, the slower bus will
cause wait states that lead to much longer times than if a single disk
must be read. Furthermore, the disk array will be in use during redun-
dancy recovery. Every I/O operation will contend with the recovery pro-
cess for disk access, because that process accesses all disks all the time,
whereas in Raid1 only one disk is used and access to other disks does not
lead to contention.
7 There are special arrays with synchronous rotating disk spindles to minimize

positioning time.
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Fig. 5.7. Raid5 configuration consisting of four disks. The data blocks d are
striped over the disks as well as the parity information p

� Raid5

Raid5 implements block-level striping (we just named it striping before)
plus parity information which is distributed over the drives, illustrated
in Fig. 5.7.

Similar to normal striping, the stripe size (or block size) needs to be
defined. A block is also the unit for parity calculation.

Raid5 has the best performance (same as a normal stripe) for concur-
rent read requests, as the load is balanced between the drives. This is
the most common load pattern, which makes Raid5 a widespread solu-
tion. On small writes, Raid5 is inefficient. Each time a block is written,
first the old data block and parity block need to be read (they are needed
to calculate the new parity), then the new data and parity blocks can be
written. This means for each block to be written, two blocks need to be
read and written. As read and write cannot be done in parallel, Raid5 is
very slow for small synchronous write operations.

For large writes, the controller can coalesce all data blocks from one
stripe (e.g., d1, d2, and d3 in Fig. 5.7) to calculate the new parity without
reading any old data.

Like Raid3, Raid5 has slow redundancy recovery times, since all the
data needs to be read in order to reconstruct the lost data. During recon-
struction, writes are very slow (as first the whole stripe needs to be read
to reconstruct old data), but reads are unaffected if the requested block is
not on a failed disk.
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Fig. 5.8. Raid10 configuration consisting of a stripe of three mirrored disks

� Raid6 – Double Parity Raid aka RaidDP

RaidDP works similar to Raid5 but uses two disks for parity information;
therefore, two simultaneous disk failures can be recovered. Some imple-
mentations use two dedicated disks for parity, others distribute the parity
information over all disks.

On read, RaidDP has the same performance as Raid5 (and striping);
on write it is slower than Raid5 because two parities need to be calculated
and written. The reconstruction time is also worse than Raid5

However, RaidDP is being used more and more because of the advan-
tage of surviving two disk failures.

� Raid10 and Raid01 – Combining Stripes and Mirrors

Sometimes it is useful to combine multiple Raid groups with different
Raid levels. Typical combinations are a Raid level to provide redundancy
combined with striping to improve performance. These nested construc-
tions are labeled by joining the numbers of the individual Raid levels:
Raid10 means a stripe of mirrors, see Fig. 5.8; Raid01 means a mirror of
stripes, see Fig. 5.9 on the facing page.

In practice, Raid01 and Raid10 are often confused; for high availabil-
ity only Raid10 is of interest, one should never use Raid01 at all. Disk
outages in the Raid10 configuration leave the mirror intact, though with-
out redundancy. The stripe that includes that nonredundant mirror is
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Fig. 5.9. Raid01 configuration consisting of a mirror of two stripes from two disks

still functional, whereas in Raid01 configurations, a disk outage causes
the failure of all stripes on that disk and that can render whole mirrors
defective. Appendix A.4 explicates the reliability difference between those
two configurations.

� Summary

This concludes the discussion of Raid levels. There are more Raid levels
and we left them out because they are used less or are proprietary to one
vendor. Table 5.2 on the next page provides a summary of our discussion.

Appendix A.4 has an in-depth analysis of the reliability of different
Raid levels. At the end on p. 371, you will find also some selection and
configuration guidelines that result from that reliability analysis.

Volume Managers and Software Raid

If our computer system has multiple disk drives connected to it, all the
aforementioned Raid configurations can be implemented using function-
ality of a so-called volume manager. This is a piece of software running
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Table 5.2. Summary comparison of redundant array of independent disks (Raid)
levels. Please note that the evaluation is only a rule of thumb; it depends on many
parameters which are not taken into account. DP double parity

Performance
Raid
level

Storage
efficiency Reliability

Recon-
struction

time
Seq.
read

Random
read

Seq.
write

Random
write

0 n −− N A ++ + ++ +
1 n/2 ++ + − − 0 0
3 (n−1)/n + − ++ 0 ++ 0
5 (n−1)/n + − + ++ − −

DP (n−1)/n +++ −− + + − −−
10 n/2 ++ + ++ + ++ +

as part of the operating system and is a layer between the physical disks
and the logical devices which are used to build file systems.

The volume manager’s function is to implement all the functionality
needed for Raid configurations. Originally, they were the only way to do
so. In the meantime, that functionality has been taken over more and
more by specialized hardware (called Raid controllers) or storage appli-
ance systems that we will meet in the next section. But volume managers
are still in use to manage small Raid configurations with a couple of disk
drives.

Even if most, if not all, functions are available from storage systems,
a volume manager is often still needed as a layer between the storage
system and the raw devices and file systems in the computer, see later.
This has historical reasons and is nowadays an unwanted complication.

The volume manager’s configuration stores the information on how
the individual disks (or logical units, LUNs, if a storage system is used)
are connected to build the raw devices. If this configuration is lost, no
data can be accessed anymore; therefore this configuration is stored in
multiple copies on different disks, or at other places. It is important to
fully understand how and where this information is stored, to prevent
unwanted corruption or deletion. For example, sometimes it is stored on
a piece (slice) of the root disk(s). In this case, we cannot easily have a copy
of the root disk(s) to boot from in if there are problems. They could contain
an old version of the configuration and could corrupt data, or make it
inaccessible, at least.

If we are careful, we should do the following test, before a system goes
into production: we should delete the whole volume manager configura-
tion and recreate it. This activity will not destroy any data (please verify
this with your vendor) and makes sure that you can recreate the data if
it is needed.
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The volume manager is a single point of failure, also in a failover clus-
ter. There it is a little more complex, as we have two instances running,
one on each node. They typically build a type of application cluster them-
selves and synchronize configuration changes automatically. This leads
to problems if the configuration needs to be changed if one cluster node is
not available. We need to check this scenario before we go into production.

An interesting use of volume managers is to mirror between two inde-
pendent storage systems (this is called host-based mirroring).

This provides protection against the failure of a whole storage sys-
tem. The idea might sound a little paranoid at first hand, as the stor-
age systems should be fully redundant. But they can fail, mostly because
of misfunctions in their system software. After all, storage systems are
specialized computer systems, including the operating system, the disk
driver, and the internal volume manager. That software is the most criti-
cal single point of failure in many storage systems!

5.2.2 Storage Systems

Historically, two evolutions led to the emergence of independent storage
systems:

1. Limitations of volume managers: the volume manager functions
are executed on the computer’s CPU, and caused a performance bot-
tleneck – especially the calculation of parity information and recon-
struction activities. They were limited in scalability to manage a large
number of disk drives, both in terms of easy configuration and perfor-
mance. Many implementations were of poor quality, which decreased
their reliability – specialized products had better quality and perfor-
mance. Functions like snapshots were not available with volume man-
agers, but were available from storage subsystems. However, today
not all of these arguments are still valid.

2. SANs enabled new functions: multiple computers could easily
share drives, which allowed there to be a pool of disk space for many
computers. Data can be copied directly between storage systems over
long distances, which allowed for new disaster-recovery solutions.

What is a storage system? It is basically a hardware box which con-
tains disk drives (typically up to some hundreds), a specialized storage
processor, specialized firmware to execute its function, cache storage, and
Fibre Channel connections to the SAN. The vendor tries hard to provide
reliability, performance, flexibility, and ease of operation with such a sys-
tem. Indeed there are many good products on the market, which even-
tually enabled the utilization of Moore’s Law. On the other hand, there
are bad products as well, which needed years to become mature or disap-
peared from the market. Let us describe the basic components and func-
tions together with some recommendations (Fig. 5.10).
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Fig. 5.10. Typical layout of a storage system

� Disk Drives and Back-End Connections

Disks are often physically grouped in shelves, sometimes called trays.8
Then it is important that the different shelves are independent of each
other, e.g., have independent power supplies and independent connections
to the storage processor(s). Systems which do not fulfill this requirement
should be avoided.

In a mirrored configuration, the two disks which build a mirror should
be in different shelves to prevent single points of failure. This sounds ob-
vious, but we saw several products where this is not done automatically.

The shelves are connected to the storage processor via so-called back-
end connections. This is typically done via Fibre Channel (sometimes
other connections like SCSI, even if the front-end connections are Fibre

8 Disks are grouped in most systems, even if this is not visible by physical in-
spection. How these groups are set up needs to be understood by reviewing the
system’s documentation.
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Channel connections). We need to review the redundancy of these con-
nections. If many disks share the same connection (e.g., are members of
the same Fibre Channel Arbitrated Loop), then one single disk can bring
down the whole connection in the case of a failure. These shared connec-
tions can also be a performance bottleneck – we might need to distribute
each Raid group over multiple shelves.

� Storage Processor and Cache

The storage processor is the heart of the system:

• It implements the Raid functions (today’s systems provide most or all
Raid levels explained in the previous section).

• It provides additional functions like remote mirroring and snapshots.
• It manages drive errors and hot-spare functions; it masks disk errors

(and corresponding SCSI error messages) from the computer system,
handles other failure situations like timeouts, and can initiate a “call
home” to order a technician for repair.

• It manages the cache to improve performance.
• It provides a management interface.
• It moves the data from the back end to the front end.

The storage processor need to be highly available – better fault-
tolerant. Some vendors use off-the-shelf hardware components and use
operating systems like Linux or Windows. This gives some kind of failover
cluster with all its complexities and limitations. An additional issue is
that a storage processor needs real-time features to handle failure events
properly, which creates another complication in this case. Other vendors
choose a proprietary solution with microcode instead of an operating sys-
tem and a cluster. This needs more effort and cost, but seems to be the
more suitable solution for the task.

We conclude that both solutions have their pros and cons, which can
lead to philosophical discussions. We need to carefully review the ap-
proach and do tests. We need to evaluate the patch strategy: How are
patches and new releases to be installed? Is it possible during operations?
How can we back-out a patch? How often does the vendor bring out new
patches, and is there a release strategy?

Where is the operating system or microcode stored? Some vendors use
small pieces of the data disks. This is not a good and low-cost solution,
because it creates additional complexity and dependency.

The cache is another core component. As write cache, it hides perfor-
mance penalties of the mechanical disks and some Raid configurations
like Raid5, by immediate acknowledgment of write requests from the
computer. As read cache it can implement clever strategies of read-ahead
to also hide disk wait times. Some implementations detect even compli-
cated read patterns like full-table scans of databases, and read ahead.
However, the cache function needs to be coordinated with the cache on
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the computer system (operating system and application) to avoid dou-
ble caching, which would decrease performance and waste hardware re-
sources. The write cache holds data that has not yet been written to disks;
it needs to be protected very well against hardware and power problems.

Most systems have a battery to store the cache to disk before the sys-
tem needs to be shut down (which happens automatically). Those batter-
ies need to be tested every few months.

� Front-End Connections

These are the connections to the servers, often via a SAN. They are Fi-
bre Channel connections (sometimes also FICON for mainframe connec-
tions). A storage system has typically between four and up to 100 connec-
tions. The connections provide redundancy and load balancing together
with special drivers which need to be installed on the computer system.

� Logical Units

From a logical view, the objects which made available are logical units
(LUNs). They look like a disk from the viewpoint of the computer system.
The volume manager can combine several LUNs or split LUNs to build
multiple file systems on one LUN. This brings additional flexibility, but
makes the whole configuration more complicated. We propose doing the
disk configuration only in the storage system and not using the features of
the volume manager, unless there are good arguments to do it differently.

What is the best size of a LUN? This is a difficult question as we
need to find a compromise between simplicity, performance, and relia-
bility. Very large LUNs lead to a simple configuration and provide better
performance if the underlying Raid group is configured right. But it would
take a very long time to restore too large a LUN if the LUN is destroyed
or corrupted. We need to take the performance of our restoration from the
backup system into account to find the maximum size of a LUN. As an al-
ternative an independent copy of that LUN could do the job. As a rule of
thumb, LUN sizes are between 100 GB and a few terabytes.

Remote Mirroring

Remote mirroring is a feature that allows LUNs to be mirrored between
two storage systems over a SAN (sometimes also over a TCP/IP network).
A typical configuration is shown in Fig. 5.11 on the facing page. In two
data centers a server and a storage system are installed. The production
system runs in the first data center, and uses the “primary LUN.” The sec-
ond location acts as a standby. All changes to the primary LUN are copied
to the “mirrored LUN” in the standby storage system. The mirrored LUN
can be accessed as read-only (if at all) during normal operations. In the
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Fig. 5.11. Configuration for remote mirroring

case of a disaster, the mirrored LUN needs to be reconfigured to become
the primary one and can be accessed read-write by the standby host.

This looks like a failover cluster spanning two sites. But there is a
drawback: with today’s technology the long distance and the combination
of failover software (running on the servers) and proprietary copy func-
tion (runs on the storage systems) is not well integrated. Manual steps
are often needed to activate the standby systems. Therefore such a “clus-
ter” is not as good as a normal failover cluster at one site only and an
additional server and storage system for manual failover in the case of a
physical disaster or other kind of major outage.

The distance between the two locations can be very long, up to many
hundreds of kilometers. This distance injects additional latency for the re-
mote mirror function. If it worked synchronously (a write to the primary
storage system is acknowledged after it is also written to the second sys-
tem) the performance would be very bad over long distances. Therefore
an asynchronous copy mode was introduced. Here, the state of the second
system follows that of the first one with a delay. It is as consistent as on
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the primary system; write operations are not interchanged, they are just
delayed. In most applications, such a delay is perfectly OK, but that needs
to be checked.

Snapshots

A snapshot is the capability to instantly create a frozen copy of a LUN,
also called point-in-time image. When the LUN is changed via subsequent
writes, the snapshot stays in the state it was when it was created.

There are two implementations for snapshots: split mirror and copy
on write. A split mirror snapshot is an additional mirror connected to the
LUN, on top of Raid protection. When the snapshot is created, the mirror
is detached and is available from now on. This technique has no perfor-
mance impact after the split and the data is available on independent
storage devices. But to create such a snapshot all the data needs to be
copied. One also needs enough storage capacity to store the whole LUN;
that is not necessary with the other snapshot technology.

Copy on write is a technology where an (initially empty) region is used
to store all changes to the LUN. Then, the system can create both “views”
to the data by using the old data or the data with the changes. Such
snapshots are mostly read-only. If the rate of change is very high, then
the region which holds the changes can be very large. With the copy-on-
write technique it is possible to create many snapshots (like every hour)
with limited additional disk space.

Snapshots can be used to create consistent backups to tape. They can
be done more frequently than a normal backup and could even replace
incremental backups.

They can also be used “go back in time” if data corruption or deletion
occurred. This is a very useful high-availability feature that helps us to
recover easily from several failure scenarios.

5.2.3 SAN vs. NAS

Storage area networks (SANs) are designed to connect storage systems,
tape drives, and computer systems. They are optimized for disk type I/O,
redundancy, and robustness.

If we compare SANs running over Fibre Channel with IP networks
running on (ten-)gigabit Ethernet, there are no significant differences in
the requirements for such networks. It is therefore unclear if SANs are
really needed besides some special cases like connection of tapes or very
high performance databases, especially if we notice the additional cost
(cabling, switches, and people). Many features which have been available
on IP networks for many years have been reinvented for SANs, for un-
known reasons (e.g., flow control via buffer credits).
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Another issue of the SAN world is compatibility: In classic IP net-
works, the standards are strong enough that we do not need to check if
an arbitrary system can connect to a gigabit Ethernet network. This is
different for SANs: here even today point-to-point compatibility needs to
be checked and storage vendors provide big “compatibility matrices” to
ensure that their box can connect to computer system X with interface
card type Y.

However, today SANs are widely used and have reached a good level of
maturity. They can be built fully redundant and with very high reliability.
Their biggest risk is people skills for monitoring, incident handling, and
reconfigurations.

On the basis of these observations it is unclear if SANs will hold their
market share or become more and more a niche solution. So let us look
at their biggest competitor: network-attached storage (NAS). NAS is a file
level protocol (vs. SAN, a block level protocol). NAS runs over a normal
TCP/IP network and has two competing protocols: Network File System
(NFS), an Internet standard originally developed at Sun Microsystems,
and Common Internet File System (CIFS), a proprietary protocol from
Microsoft. The focus of CIFS is the sharing of file systems to end-user
devices. NFS is a little more general; it can be used similarly to CIFS, but
also to attach servers to storage devices.

The current challenge for NAS solutions is if they will successfully
serve database files in mission-critical environments. Many people be-
lieve it works well, but a breakthrough has not happened yet.

5.2.4 Journaling Is Essential for High Availability

Journaling is a property of file systems or storage systems where changes
are first written to a nonvolatile area before the I/O operation has fin-
ished. That restricts very aggressive caching strategies, where write op-
erations just place the changes in RAM and rely on the cache manage-
ment to write the data to disk eventually. Instead, it is a compromise that
allows still heavy caching for current disk structures while ensuring the
safety of the data. In the case of a system crash, the changes will still be
available and can be replayed.

Journaling in operating systems is implemented in the file system
drivers; here disk storage is set aside for the change information. Some-
times explicit mirroring of this journaling area is necessary to achieve
high availability. Otherwise, a disk error of that area would render the
journaling functionality void. Very often, only metadata changes are
recorded, i.e., only creation and deletion of files. Good journaling file sys-
tems have the opportunity to demand journaling of file content changes
as well, though this has to be configured manually.

Storage systems implement journaling as well. They often use battery-
buffered CMOS for the journaling area. For NAS systems, this ability is
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similar to the journaling file systems on the operating system level. For
SAN systems, journaling resembles more the redo logs of databases; see
Sect. 7.2 for more information.

For files, journaling should be used all the time, otherwise, restart
times after a crash are too long. For databases, journaling should be
turned off since the database servers handle the storage themselves.
There we must pay attention instead to ensure that no write caching is
used for the redo-log areas.

5.3 Virtualization of Resources

Virtualization is the hallmark of modern IT systems. They supply re-
sources in logical units to application programs and free them from re-
liance on specific hardware or hardware configurations.

Virtual CPUs

Virtual CPUs mean that each application thinks it has the CPU for itself,
even though it is sharing it with others, i.e., the capability of multipro-
cessing. For most people, multiprocessing is so elementary that they do
not even mention it anymore. In this book, we should remember that they
are a virtue that are engineered and that this capability is available in
different qualities, depending on the operating system.

That a service needs a CPU is often neglected, much to the chagrin of
those who have to handle real-world problems of computer systems. If a
service is made up of multiple processes, or if several services run on one
physical host, it can well be that one process runs amok and usurps lots
of CPU time. The other process may now react so slowly that services are
not functional anymore and are migrated to another node.

Being able to supply time slices to processes in a fair way, even under
very high load, is a sign of a mature enterprise-class operating system.
Mainframes, but also proprietary UNIX systems like Solaris and AIX,
shine in this area, whereas Windows and Linux both have their problems
here, at the time of this writing.

More and more, operating systems also add quality of service ap-
proaches to CPU virtualization. They guarantee that processes or groups
of processes will get a minimum of available CPU power, or they set an
upper limit on the number of CPU slices that are scheduled for these
processes. While this capability has started to appear on symmetric mul-
tiprocessing (SMP) systems, where whole processors are allocated to pro-
cess groups, newer operating systems also make it possible to allocate
parts of a CPU. This decreases the likelihood of damaging interdependen-
cies between processes and builds an important base for enterprise-class
host virtualization, as explained in Sect. 6.3.2 on p. 184.
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Virtual Memory

Virtual memory is as old as virtual CPUs, and as mature. In contrast,
administrators are often more aware of it, as they have to configure the
amount and location of swap space. But as with multiprocessing, the im-
plementation quality of virtual memory management differs from operat-
ing system to operating system.

Memory leaks in application programs are a well-known and often-
occurring problem for services. Regular restarts help to confine that prob-
lem. Most operating systems have another problem: overcommitment of
storage allows applications to allocate more memory combined than is
actually available as virtual memory. This is due to many processes not
using all their allocated virtual memory – especially Fortran and Java
programs are prone to heavy preallocation of memory that might not be
used in the end.

When virtual memory is exhausted, a failure might occur in a dif-
ferent application from the one that is actually exhausting it, owing to
overcommitment. The memory exhausted error does not appear when an
application requests the memory, but when an allocated memory page is
used for the first time, without available space in virtual memory. Oper-
ating systems have different strategies to handle that situation, which
all boils down to aborting arbitrarily chosen processes. This is relevant
for our high-availability topic as it is another illustration of dependencies
between several applications or services running on one host that seemed
to be independent before.

As with virtual CPUs, quality of service based memory resource man-
agement is starting to appear in some UNIX operating systems, though
it is not yet available in Windows or Linux. This resource management is
being introduced for enterprise-class host virtualization, but will be put
to good use for running several highly available services on one server as
well.

Virtual Storage

Much of the topic of storage virtualization has been described already in
Sect. 5.2; we do not need to repeat it here.

The specialty of storage virtualization is that data disks in high-
availability environments must be accessible from several servers. As we
have explained already, data disks are crucial because they keep all the
business information and that information exists only once. If any com-
puter system has an outage and the service is now continued on another
system, that backup system must have access to the data.

If we use such shared storage, we need to pay attention to the re-
striction that a disk can be allocated to only one system at a time. To
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achieve that, the volume manager is used. Disks are combined into vol-
ume groups, and the volume group is the unit of virtual storage that is
managed. Volume groups with application data are associated exclusively
with services, and are reallocated to servers as needed for service migra-
tion.

Virtual network interfaces

Virtual IP interfaces, also called alias interfaces, make it possible to pro-
vide a “network identity” for every service. This allows services to be
moved between servers. These alias interfaces are supported on all op-
erating systems.

To make that work, virtual interfaces must be complete and also in-
clude the Ethernet level (that means they must have their own Media
Access Control (MAC) address) or if they share the MAC address with
the underlying physical interface, traffic must be routed properly to the
new node after service migration and Address Resolution Protocol (ARP)
caches must be updated.

5.4 Vendor Selection and Purchasing Decisions

Working with the right vendors, using the best products, and running
them using the best teams are key ingredients for highly available sys-
tems and their operation. But the selection cannot be static: vendors
change their product plans, perform restructuring activities, and execute
mergers and acquisitions. All those changes can happen in a short time
frame of a few years. They can change a good choice of a vendor and its
product to a bad one and vice versa.

Therefore we cannot provide a list of the best vendors and products.
Instead we present a list with the most important criteria and considera-
tions for your guidance:

� Product Line

This is decided by carefully reading the technical product descriptions.

• How flexible is the product line with different options (i.e., different
models in the product line)?

• How scalable are the products (e.g., numbers of CPUs, memory, I/O
cards)?

• Are the main features state of the art (e.g., speed of internal buses and
external connections)?

• Do they provide quantitative features like performance numbers?
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The key features for high availability are quality, robustness, and service-
ability, as explained in Sect. 5.1 on p. 104.

It is always good to compare similar products from competitors. Take
some time to review the market space of the product line. Is it in a niche
market, because of its very special features? If you plan to purchase such
a product, carefully check why you really need it and be aware of the risk
in purchasing a niche product.

� Product Roadmap

After we have analyzed the current product line, we need to understand
how it evolves over its lifetime and what its future is expected to be. Most
hardware vendors publish roadmaps that explain what we can expect to
see from them in the midterm. It is often worthwhile having a roadmap
presentation by one of the vendor’s presales engineers. Sometimes such
presentations only provide in-depth information when you sign a nondis-
closure agreement.

There is a wide spectrum in the quality of such presentations. Some
show mostly vision and hype – with only little specific and useful infor-
mation for your future planning. This can be translated to a bad roadmap
or a less skilled presenter. We propose to openly bring up your concerns
and give them a second chance.

A really good roadmap starts in the past, shows how the current prod-
uct line developed, and goes a few years into the future. Further on it
talks about potential future product lines and the company’s vision of how
the the technology will evolve. This discussion can be vague but should
be grounded by specific arguments and trends.

One topic which vendors do not share is product announcement dates,
unless they are only a few days ahead. But they might share dates with
the precision of a quarter or even a month. To make a purchasing deci-
sion, you need to get this information, as you do not want to purchase a
system just before its successor is announced. We propose having an open
discussion around this potential issue to prevent any surprises.

The typical timeframe for which a vendor has an oversight of its prod-
ucts is about 1–2 years. It does not make sense to ask for a much longer
roadmap.

� Vendor Visit

There are multiple places which you should visit. First the laboratory;
some vendors might allow a sneak preview of the next product generation.
This is a very good opportunity to check the reality of the new product is
and in which state of development it is. Is it still only one box or even
only components, or are they already performing integration tests with
other products from other vendors? If you have the opportunity to talk to
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a development engineer, you can gain insight into which challenges they
are fighting with.

In the manufacturing plant where the final assembly is done, you
should concentrate on the vendor’s approach for quality. How do they test
for bad systems? How is burn-in executed (see also Appendix A.6)? Do
they stress-test all systems they deliver or only samples? If systems fail
early, how do they analyze the root causes? What equipment do they have
for this analysis? Some vendors are proud of their quality system and
show you their efforts; others might give you some vague talk about six
sigma. You need to accept that high quality has its price – you can only
expect such efforts for high-end (and therefore high-price) systems.

A visit to the vendor’s “Executive Briefing Center” must be properly
prepared for. Without such preparation, the chances are high that you
will get only lots of marketing material. Furthermore, it is likely that
you will speak to marketing people who will not go beyond the informa-
tion that is already in those brochures. If you plan such a visit we pro-
pose specifically asking for in-depth technical information and carefully
checking the agenda for your visit. If you have questions about the com-
petitiveness of the products, this is the place to do it. You might inform
the vendor about this intent in advance to allow preparations to be made.

� Cross Platform Support

Most sites have a heterogeneous environment and deploy systems from
several vendors. What is the vendor philosophy about openness? Can doc-
umentation be provided like “compatibility matrixes,” which tell exactly
which combinations with other vendors’ products, configurations, and re-
leases work and have been tested?

� Alliance Partners

In today’s world, most vendors need alliance partners to be competitive
and to supplement their product suites. Therefore we need to review the
alliances the vendors have. What is really meant if your vendor claims
that company X is an alliance partner? Potentially, alliances are a win-
win situation both for vendors and for customers – as long as there are
comprehensible plans behind the partnership. For example, good signs
are shared product development or tight integration of products; bad
signs are when they only buy equipment from each other. Other criteria
can easily be found and are common sense in the assessment of vendors.

� Maintenance Concept

Review the vendor’s concept for maintenance activities. Are they done
in-house or are they outsourced to another company? How are your calls
handled? Review the call-handling process. Ask the vendor how the ticket
system is organized. Do you have online access to your own tickets?
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Is there active notification of changes and notification triggered by time
passed? Or do you need to phone in yourself every hour and ask what is
going on with the open call that you have for your mission-critical server?
How is second-level and third-level support organized? Where is the next
depot with spare parts? Often it is in another country or state, for tax
reasons. This is important for the mean time to repair; sometimes spare
parts must be fetched several times (because they were the wrong part,
or because they are “dead on arrival”).

� Reference Installations

Visiting a different installation can provide very good information and
can limit the risk. The vendor should provide you with a list of at least
three reference clients that you can choose to visit. During the visit you
can get all kinds of insight, including good and bad configuration options,
quality issues, and outages. Many reference clients are very open in shar-
ing their experience, but they naturally have a positive bias as they want
to defend their decision for choosing that vendor.

� Client Councils

Many vendors organize so-called client councils or user groups. This is a
win-win situation for the customers as they can share information and
experiences, and for the vendor who can efficiently communicate market-
ing and sales messages. It is worthwhile investing a few days per year
in such miniconferences. If a vendor does not support such activities at
all, he wants to overly control communication, or if the meeting contains
more incentives than information, caution is advised.

� Financial Situation

We do some simple checks, like the company’s rating and its base finan-
cial indicators. On the basis of our experience it is very hard to get deeper
insight and predict the company’s future. Even insiders typically do not
know about important announcements and mergers and acquisitions un-
til they really happen. Therefore we limit our time to basic checks.

� Local Team

Beyond product features and quality, the performance of the vendor’s lo-
cal team is crucial. It consists of three roles:

The sales representative, who is also the informal team leader. He (or
she) is also your first point of escalation in case of problems. But not
everything can be an escalation – then nothing would be!

The presales and postsales engineers are consulted for all technical
questions and make sure that you purchase a good configuration. Their
most important attributes are technical qualifications and experience.
Such roles cannot be done by a newbie.
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The service manager is responsible for all operational questions. This
role is important as a consultant for proactive maintenance activities and
in case their are problems (problem and incident management in IT In-
frastructure Library, ITIL, terms).

You need to build a mutual trust relationship, which takes some time
to get established – therefore vendors who often change their staff cannot
be rated as good!

We see the vendor selection and relationship to the vendor as a long-term
activity. Working with the vendor and being its partner is much better
than a simple buyer-seller relationship. This should not be a hurdle for
tough price negotiations – therefore the partnership should not become
too personal, which can only be achieved if some distance is retained.

If the vendor struggles with delivery or if there are issues with a prod-
uct, do not just switch to another vendor – be loyal and give him a chance
to fix the problems. But after multiple bad experiences it is time to con-
sider a change. This is obviously a tough decision and needs to be thought
through. If the decision is made, it needs to be communicated properly to
all parties involved, to allow there to be a graceful breakup between you
and the old vendor.

All these topics and scenarios should be considered when selecting a
new vendor!

With how many vendors with a similar product portfolio should we
have relationships? We believe that two, perhaps three, is a good number.
Only one is not a good choice – that vendor could become a single point of
failure very soon. If we have more than two or three, we would lose our
focus and this would cost us too much time for all the activities previously
described.

For us, in order to stay long in our business, we should write notes
about products, features, and experiences. This helps later on when mak-
ing technical and strategic decisions.

5.5 System Installation

The time between delivery of a system and its start of production (SOP) is
thrilling – on one hand, we need to cover a tough schedule, on the other,
we need to identify and resolve all potential problems for the future. In
order to manage this successfully, we need to develop a good plan which
usually consists of the following steps:

� Preparation

We need to prepare our computer room for the new system. If our orga-
nization is big enough, we will have a data center (see also Appendix B).
Then we need to plan the exact location on the raised floor (including
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maintenance areas), feed through of cables, verification that the raised
floor can hold the weight, etc. In any case, power cabling, network ca-
bling, and SAN cabling should be installed in advance. IP addresses, host
names, and configuration management database entries need to be de-
fined and entered into the appropriate databases. A time plan for the
following steps needs to be developed and the various tests need to be
prepared (see the following). The overall plan needs to be reviewed and
approved by the internal departments and all vendors.

The following sections until p. 139 provide you with further informa-
tion needed for the preparation.

� Installation

The installation is done by and under the responsibility of the hardware
vendor. We need to provide support and make sure that all connections
needed to our data center (power, network, etc.) are available in advance.
We also monitor the installation process and review that all cables are
installed and labeled properly. The assumption that hardware vendors
have mastered these topics might be wrong. That is why we need to do
many of the tests described in the following.

� Declaration of Operational Readiness

This task is done by the hardware vendor. Until the vendor declares the
operational readiness, he is responsible and liable for the system (i.e., if
the system creates a fire, he is liable if it happens before that point). If it
is declared, than we take over responsibility and we own the next steps.

� Functionality and Performance Tests

For the context of this book, functionality is the delivery of high-avail-
ability features. Therefore this phase needs to test that the planned fault
protection and failure recovery works. In addition, the tests should try to
discover the behavior of failure scenarios that have not been planned for.
It is less of a problem if they are noticed before the whole system goes
into production; later it cannot be changed anymore.

We need to develop a test plan during the preparation phase to know
what we want to test later on. We propose following the process described
in Chap. 3 to design your system. This gives us a list of failure scenarios
and the expected behavior of your system. Another artifact which came
out of the architecture planning is the dependency chart. It helps to iden-
tify all relevant components in a structured way.

It is not practical to verify all possible scenarios; we need to select the
most important and most critical ones. We start with a review of the tests
that the vendor has already executed. Most vendors have a process for
their testing to verify their system and its installation. Our task is not to
blindly execute the same tests again – we should see our role in a control
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situation as following the four-eyes principle. We can expect that the in-
stalled system works, but sometimes the technician did not configure it
in the most redundant way. An example is that a disk and its mirror are
on the same Fibre Channel loop (or in the same storage tray) – such a
failure can be detected best by pulling a disk and looking at the LEDs on
the disks. Then we easily see the location of its mirror. Another example
is that two redundant network interfaces are connected to the same sys-
tem bus. Finding such configuration failures is one of the main targets,
besides a set of standard tests.

The vendor oversees only his part of the overall system. We need to
make end-to-end tests to make sure that the integration works. Consider
as an example a server, a storage system, a network, a SAN, and an ap-
plication. Those components could come from five different vendors – it is
our responsibility to develop the right tests to cover all possible scenarios.
This is where the dependency chart helps us.

The next question is how should we document our test plan? It is
our experience, that some people do all the planning in their heads only
(i.e., no documentation); others develop large text documents. Both ex-
tremes do not work well. We propose using a simple spreadsheet like the
example shown in Table 5.3 on p. 136. This can be easily managed and
all parties involved can read and understand it. It is also designed for
two further jobs: reuse for other systems you will install in the future,
and proof of what worked in the beginning (in case we need a root cause
analysis if an unexpected outage happens in future).

In the following we describe the most important columns; you might
add more depending on your needs:

Component: The affected component from the dependency chart. The
level of detail should be limited and so should the total number of
different components. We might sort by this column to see all tests for
one component together.

Scenario: The scenario for that test based on our developed architec-
ture.

Objective: Which feature of the system is the subject of the test.
How: A simple and explicit description of how this test should be ex-

ecuted. If applicable it should contain host names, paths, command
names, etc.

Expected result: A description of what we expect to happen. This is the
last chance to verify the system design against the requirements.

Downtime: The expected downtime, or other relevant times like time to
do a failover. It is a good exercise to predict the times. It shows how
good our information about the different components is and how well
we thought through our design.
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Execution time: The expected time to execute the test. This is impor-
tant for the resource and time planning. The sum of all execution
times gives us a hint for how long all the tests will take.

The test plan should also contain performance tests. To measure the
performance of infrastructure components (i.e., I/O, network, CPU, mem-
ory) is straightforward. Lots of tools are available to measure all kinds
of values. The challenge is more to define requirements on the infra-
structure level and to predict the values for the configuration chosen. We
should work with the particular hardware vendor and ask him what per-
formance numbers can be expected. This is the point where marketing
messages meet reality. . .

Overall system performance is most important; it should be seen as
a feature that needs to be verified. However, such tests are often compli-
cated and not easy to do, as it is not easy to artificially create sufficient
load. Load-generator software can be a useful tool to create production-
like load. However, such tools are somewhat complicated to use, and it is
not possible to verify or falsify the results before we can compare them
with those for with real production load. Therefore we should considered
involving a specialist, often a consultant from the software vendor.

After we have finished the test plan, it should be reviewed and ap-
proved by all parties involved.

Now it is the time to verify that the new system works as designed.
We execute the tests according to our plan and document the results in a
table which corresponds to the one from our planning. Table 5.4 on p. 137
shows an example. In the best case all tests are successful, and all pre-
dicted behaviors and times are met. However, if a test fails, then our plan
was also successful; we have the chance to fix failures before the system
goes into production. If the root cause of a failed test is obvious and can
be fixed by a small change (e.g., fix a typo in a configuration file), then
it is advisable to immediately fix the problem and rerun the test. But if
the root cause is complex or cannot identified in a short time frame, we
should step back before we spend all our time in fixing this single prob-
lem. We might decide to continue with other tests, if that makes sense,
and let another team work on finding the root cause.

If a root cause can be found and it requires a complicated change, we
should not immediately start working on that change. The risks are that
we lose too much time and might not identify other problems. We also
might need to rerun other tests because of that change – this needs to
be thought through very well. It would be more than disappointing if we
fixed one problem, but created another one by the fix!

If the new system is sufficiently complex than it is advisable for one
person (or one team of people) to execute the tests and another person
to manage the tests. This includes documentation and decisions and pro-
vides an independent look at problems.
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� Reliability and Stress Tests

At this stage we hopefully have verified that our system works as de-
signed. Now it is time to freeze the system configuration, let it run, and
see its stability.

Depending on our buying power, this can be a step before system ac-
ceptance. If we do not have a strong position with our vendor(s), or if there
is no time, or the system is not seen as so critical, we skip this step. Then
we rely on our monitoring during production and have to document and
follow-up on all irregularities.

If we plan for a reliability phase, how should we do it? The first ques-
tion is when: before start of production, after, or a mixture? Because the
lifetime of a system is normally about 3 years, we should put it into pro-
duction as soon as possible. It depreciates every month by around 3%; for
financial reasons we cannot do testing prior to production for a long time.
Therefore we propose a mixed approach, if there are not good reasons
against it: a very short period of a few days where the system runs under
artificial load and stress tests. If the system survives this period, it will
go into production. The reliability test phase still can continue, also from
a contract and payment viewpoint with our vendor(s).

What are the right conditions for this phase? We definitely do not have
enough time to get statistically meaningful information. In our experi-
ence the following approach works best. We chose a time interval when
the system is not allowed to fail. A typical duration would be 4 weeks, but
it could be a good strategy to let the vendor propose a duration. As the
vendor needs to say how long he expects his system to survive, he cannot
come up with a very small number. If a failure occurs during this interval,
then we start from the beginning. Depending on our negotiating power,
we can connect penalty payments with each such failure, up to the right
to give it back after a predefined number of failures during the reliability
test phase.

If our system contains parts which do not cause an outage if they fail
(e.g., disk drives which are mirrored), then we can use an alternative (or
additional) approach: we can specify a number of such failures which can
be calculated in advance from value of the mean time between failures
(MTBF) given by the vendor. Example 3 on p. 373 in Appendix A shows
such a computation.

� System Acceptance

System acceptance is a project milestone, often connected with payment
to the vendor(s). Unless we negotiate and contract differently, a system is
accepted implicitly if we start using it in production. Sometimes it makes
sense to pay some of the purchase price (e.g., 50%) when the system goes
into production. The remaining price – possibly reduced by a penalty –
will be paid after successful completion of the reliability test period.
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� Start of Production

The start of production is a milestone which needs approval by all stake-
holders, foremost the system owner and the business owner. It usually
follows a successful user acceptance test (UAT), which is not the subject of
this book. The user acceptance test is about application functionality; it
is not a statement about reliability, quality, or probability of failures.

5.6 System Maintenance and Operations

An exhaustive description of how to organize and manage system opera-
tions would go beyond the scope of this book. We provide some guidance
about the most important aspects to optimize system reliability.

� Monitoring

System monitoring has many aspects and we need to cover them all to
achieve reliable operations. Let us start with the environment. We expect
that power, temperature, and humidity are monitored by our data center.
If our systems are not in a data center, we need to install sensors and
record the values. Second is the internal environment of our system. This
is mostly the temperature inside the system rack and inside the system
(i.e., temperature on the CPU or system board).

Next is the operating system. There are many commercial and open-
source systems available which can do this, mostly out of the box. But
we need to set sensible thresholds: a compute server, for example, al-
ways runs at 100% CPU utilization; a database server should not run
above 80%. Middleware and applications, on the top level, need to be mon-
itored as well. Most monitoring tools provide the capability to develop our
own agents for this purpose. Many tools deliver agents for the most com-
mon applications, like databases. The development of such agents needs
some experience and a good understanding of the application’s behavior
and system requirements.

When do we know that we measure and monitor all relevant in-
stances? We propose using our dependency chart to verify that all compo-
nents of our system stack are covered. An example of a common failure
is missing monitoring of cluster activities. Many tools monitor all kinds
of operating system variables but are not cluster-aware. They see clus-
ter activities like a failover as reconfiguration, which sometimes creates
a (misleading) alarm, and sometimes they are just ignored.

If we have now implemented monitoring of all components of our sys-
tem stack, what can we do with it? Besides reacting to alarms which are
automatically created if thresholds are exceeded, the different specialists
should regularly look at the evolution of the values to detect long-term
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trends and to proactively prevent problems. In ITIL terms, we are in a
gray zone between monitoring and capacity management.

Another activity is the detection and analysis of correlations of values
from different layers: if the transaction rate of our database increases,
what is the influence on our storage system? Does the I/O wait time go up
(which could indicate an upcoming bottleneck) or stay constant?

Those end-to-end views are important for us to understand the whole
system and to detect problems early, before there is an impact on busi-
ness.

Review of log files is the other component of system monitoring. First we
need to discover which log files exist and are important. The operating
system logs are obvious, but there can be many more components which
might create their own logs, like volume manager, cluster software, mid-
dleware, applications, and infrastructure services. Here again, we use our
system stack and dependency diagram to find all relevant logs. There are
tools available for automatic log scanning and analysis. It is proposed to
use such tools, but to not only rely on them. We also need to review all logs
manually, to get a better understanding of our system, and to inspect the
work of the automatic tools. Many tools for log scanning are highly con-
figurable. We should use our experience from the manual log inspection
to constantly improve the configuration of our tool(s).

On the basis of experience, more than 30% of system outages could
have been prevented if all logs had been inspected properly!

� Vendor Maintenance Contracts

We propose regularly reviewing our contracts and optimizing them ac-
cording to our real requirements. We found that very often systems miss
an appropriate maintenance contract: some have a too high level and too
much money is paid; other – critical ones – have a contract with too long
reaction times.

Three aspects need to match: the business requirements, our operat-
ing concept, and the maintenance level of the vendor contract. It does not
make sense to pay for a 7×24 contract, if our own team does not moni-
tor the systems over the weekend and would not notice a problem at that
time.

And sometimes systems run out of maintenance unnoticed, which will
significantly increase the time to repair in the case of an incident.

We need to gain a clear understanding of the conditions of the con-
tract, in particular what is the meaning of the term reaction time. Often
this is just the duration until when we are contacted by a call agent after
we have opened a problem ticket, with no further commitment of when
and how fast the vendor will work on the problem.

The best case is when the vendor guarantees a time to repair; most
vendors decline such a contract clause. However, even if we do not get
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such a time in writing, we should have a discussion with our vendor to
match up our expectations.

Another important topic is the vendor’s concept for problem resolu-
tion. First, how does the vendor get access to information about the sys-
tem and its problem? There is a wide spectrum of approaches, the worst
one is unfortunately widespread: some call-center agents ask for infor-
mation via email and we enter in a loop of sending mails back and forth,
which could take forever. The best approach is when the vendor has the
capability to remotely access your system (under your control) and he
holds your detailed system configuration in his database. Second, how is
his first-, second-, and third-line support organized and how does this fit
with 7×24 availability (“follow the sun”)?

If there are questions or concerns, we propose placing a bogus problem
call during the night and seeing what happens. After the call has been
closed we should review the activities with our vendor and ask for an
extract of the vendor’s call tracking database.

In future we expect more and more data sharing with the vendors
about problems and configuration changes; XML could be the enabler.

� Team Approach

Our system is operated by multiple parties: vendors, other companies,
and multiple departments of our own institution. We need to prevent
all these people working only in their “silo.” Therefore it is advisable
to schedule operational meeting regularly where all the parties come to-
gether and discuss all kind of activities, like planned changes and other
observations. This will lead to better responsibility and accountability for
the whole system, not only the individual piece of the puzzle.

� ITIL – Information Technology Infrastructure Library

ITIL is the globally accepted process-oriented approach to system oper-
ations; refer to Appendix C. The processes described there are somehow
obvious. When we were confronted the first time with the ITIL frame-
work in 2002, we found that we already did all this based on our experi-
ence and our own process improvements over many years. However, our
categories were different and we used different terminology. This is why
ITIL is important, even for operations teams with much experience and
mature processes: it is the worldwide consistent language and terminol-
ogy for system operations. Therefore we propose investing in ITIL and
achieving service management certification for the key people.

It is also strongly advisable to do good bookkeeping of all changes,
problems, and incidents as described in Sect. 5.7.
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5.7 Making Our Own Statistics

Appendix A presents the mathematical concepts that are needed to un-
derstand and predict reliability of components and systems. The mathe-
matical concept is important for understanding the basic theory of reli-
ability. In particular, it defines the important terms mean time between
failures (MTBF) and annual failure rate (AFR): the first is the average
time until a failure happens, and the second is the average number of
failures per year.

Let us apply that theory and let us come to “real” data from the field.
As there is no other data source available, we have to collect our own data
and make our own statistics. Following the ITIL framework, this leads to
a database with the following sets of information; see also Appendix C:

Configuration management
• System name
• Vendor
• Series (i.e., a server of series S by vendor V)
• Configuration (model, patch level, system-specific, like number of

CPUs, disk drives, etc.)
• Location
• Date for start of production

Change management
• System name
• Date and time of change
• Duration of change
• Type of change (use categories like “microcode upgrade”)
• Reason for change (use categories like “bug-fix”)
• Result (use categories like “successful,” “no success – backed out”)

Problem and incident management
• System name
• Date of incident
• Impact (use categories like “no,” “performance degradation,” “lost

redundancy,” “crash with x min of downtime”)
• Root cause (use categories like “disk failure,” “operating system

panic”)
• Comment with further information

There are many proprietary and open-source-based tools available
that can be used to store this information. But a simple database or even
a set of Excel tables (if you manage only a few systems) can do the job as
well. If you decide to use commercial software, we propose checking the
system’s capabilities to create flexible reports (as described later). The
openness of the system is also important, i.e., does it allow the export of
information for further analysis.
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Fig. 5.12. Cumulative failures of a system as a function of system age. There is
no trend – a mean time between failures number would apply

However, the challenge is not to find the best tool, it is about data
quality and completeness. Our statistics are obviously only as good as the
information they is based on.

Let us now assume that we collected the raw data for at least a couple
of weeks (better months). The simplest thing we can do would be to cal-
culate the MTBF for our various systems (using the problem categories
“crash” or “lost redundancy”), and we can calculate the trustiness of the
result. But this could be misleading, as the MTBF assumes a homoge-
neous distribution of failures. The MTBF can be an oversimplification, if
our systems are not in the middle part of the bathtub curve, or if we have
an external or a systematic root cause for the failures.

Therefore we first need to make a cumulative plot like that shown in
Fig. 5.12. This example show a pretty constant rate; an MTBF (or AFR)
number would make sense. The AFR shown of about 13 would be far too
high for the failure rate of a computer system; it could represent disk
failures in a large storage box of perhaps 400 disk drives. We continue
using numbers of that magnitude, to simplify the discussion – to make
them applicable for single components or single hosts, they need to scaled
down appropriately. If this were the imaginary storage box with 400 disk
drives an AFRdisk would be 0.0365 – consistent with Table A.2 on p. 364.

Let us now consider Fig. 5.13 on the following page, which shows the
cumulative failure rate of two systems: one is at the beginning of the
bathtub curve (improving), the other at its end (worsening). For both,
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Fig. 5.13. Cumulative failures of two systems as a function of system age. One
shows an improving failure rate (“early mortality”), the other a worsening rate
(“end of life”). The dotted lines are shown to illustrate the behavior

an MTBF number does not make sense. The important information in
these plots is that we see the changing failure probability and can act
with appropriate responses.

If we have multiple systems of the same series, we can compare them
in order to identify a system with anomalous behavior, as shown in
Fig. 5.14 on the next page. Four of the five systems show a similar failure
rate; their distribution looks homogeneous. But the fifth system’s failure
rate is about double and the curve’s shape indicates a worsening system.
For this system further analysis is required immediately.

So far we have looked into failure depending on system age. Another
important diagram uses the failure dependence on calendar date – ignor-
ing the system’s age. This can tell us about root causes which are linked
to a specific date, indicating an external reason (like environmental prob-
lems). Another reason could be that we implemented a patch on all sys-
tems on the same date. In this case the diagram can show us if the patch
created new problems and, looking over longer time intervals, if it im-
proved reliability.

Figure 5.15 on the facing page shows this behavior with bursts of
failures on November 24 and May 21. This could be weekends where a
change was applied to all systems. In this figure, we plotted the mean cu-
mulative function (MCF) [11, 13], which is simply the average number of
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Fig. 5.14. Cumulative failures of five systems as a function of system age. One
shows a significantly higher failure rate; the curve’s shape indicates a worsening
system
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Fig. 5.15. Cumulative failures of six systems as a function of calendar date. The
curves show a burst of failures on November 24, and May 21, see arrows. The bold
line is the mean cumulative function
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failures per system as a function of calendar date.9 The derivative of the
MCF is the recurrence rate for the population of systems in question. In
this example, it shows very easily the dates when the failure bursts occur.

The MCF can and should be used for all plots with multiple systems
to show the average behavior; it can also be applied using the system age
as an independent variable, as we discussed before (e.g., Fig. 5.14 on the
previous page).

Another important pattern to look for is the clustering of failures.
It may happen that multiple failures occur in a short time interval, as
shown in Fig. 5.17 on the facing page. This can be an indication that
repair actions are not successful: the root cause for the failure was not
removed by the repair action, or new failures were introduced by the re-
pair action. The reason for this could be bad system design and missing
diagnosis function or missing skills in the technical team.

It is useful to plot the derivative of the MCF versus age. It shows high
fluctuations at the beginning (small time means a small denominator of
the derivative) which should evolve into a pretty constant, horizontal,
curve. If this is not the case then we have a trend, cluster(s) or burst(s) as
described before. There are multiple ways to draw such a chart: lines or
only dots where we calculated the derivative, we can calculate the deriva-
tives equidistantly in time, only when failures occur; or as a sliding av-
erage over a couple of points. In Fig. 5.16 on the next page we have cho-
sen to plot a dot whenever a failure occurred. We show the worsening
system from Fig. 5.14. The fluctuations in the beginning can be ignored
(days 1–90), between day 100 and day 150 the curve stabilizes, and after
day 150 the worsening trend can be seen easily.

A similar analysis could be done for other dependent variables like
the location of systems, specific system configurations, vendors, and sys-
tem models. The last of these is important to compare the reliability of
different models (and their vendors). Our experience is that the AFRs for
different systems models (and different vendors) are between 0.05 and 2!
This range is so large that even with statistics from only a few systems
“good” models can be distinguished from “bad” ones very easily.

It is proposed to develop a set of such charts and review them monthly.
In the beginning, we might not know where our problems are and what to
look for. Then we need to create and review many such plots to look for all
kinds of patterns and root causes. Over time we will identify those charts
which are most relevant to our environment and review only those.

The influence of these activities on overall systems reliability is under-
estimated very often. It is a cheap and powerful method which can have
a similar effect on overall reliability as a good system design! Experience

9 Please note that the number of systems can change over time – the MCF for a
given point in time must be calculated based on the actual number of systems
at risk when failures on any system occur.



5.7 Making Our Own Statistics 147

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0 20 40 60 80 100 120 140 160 180 200

System age (days)

D
er

iv
at

iv
e

of
cu

m
ul

at
iv

e
fa

ilu
re

s

Fig. 5.16. Time derivative of the failures of the worsening system shown in
Fig. 5.14. After some fluctuations in the beginning the curve stabilizes between
day 100 and day 150. Later on the worsening trend can be seen easily
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Fig. 5.17. Cumulative failures of two systems depending on calendar date. The
curves show clusters of failures around November 27 and April 13, see arrows
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shows that the overall number of problems and incidents can be reduced
by more than 20%. It is motivating if we can demonstrate that our envi-
ronment becomes more and more reliable. We can use it also for manage-
ment reporting and future negotiations with vendors.
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Operating Systems

Today’s computer systems may have many redundant components, but
are not fully redundant. Outage of a component, e.g., a CPU failure, will
typically crash the operating system. The system may be restarted and
might work again if the defective component is deactivated.

While redundant hardware yields many advantages, services fail for
many reasons, and hardware errors are only one class. They were pre-
sented in the previous chapter to lay the foundation, but many problems
occur in higher levels of our system stack. Later chapters will present
concepts and methods to increase availability for middleware software,
applications, and computing environments. This chapter will concentrate
on complete computer systems: the conglomerate of hardware, hardware
drivers, operating system, and logical storage that we call a host.

Outages on the host level occur in several flavors:

Hardware errors: Failed hardware was not redundant, or an error in
redundant components happened and activation of the redundant
component did not work.

Operating system errors: Process scheduling may go awry and pro-
cesses may hang or may never start, or (virtual) memory manage-
ment is deficient, network traffic handling may not be implemented
correctly, and file systems may become corrupted.

Application errors: Memory leaks in long-running applications, dead-
locks in communicating processes, or software errors that cause inter-
nal error states.

The approach presented in this chapter boils down to:

We increase availability through redundancy on the host
level by taking several hosts and using them to supply a

bunch of services, where each service is not strictly
associated with a specific computer.
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Table 6.1. Cluster classification and properties

Failover cluster Load-balancing cluster

Supports persistent data via
shared storage (e.g.,
databases)

Application must not have a
state (e.g., Web servers)

Generic solution that can be
used for most applications

Specific solution that can be
used for few applications

Provides recovery from
failures, no scaling

Provides recovery from
failures and increases also
application performance
(horizontal scaling)

Usually needs big servers
with redundant hardware

Works typically with small
and cheap servers

Being able to move services seamlessly from one host to another or pro-
vide them on several hosts from the start means that outages of one host
leave the overall service functionality nevertheless intact. This approach
is called host clustering in computer parlance.

Host clustering is not a single method but a whole class of concepts
that come in different varieties:

• Failover clusters
• Server farms, also called load-balancing clusters
• Compute clusters

Compute clusters are not of relevance for this book, since they do not
realize high availability or disaster recovery. There remain:

• Failover clusters , which allow a service to migrate from one host to
another in the case of an error. They are the most used technology for
high availability. Section 6.1 covers them in detail.

• Load-balancing clusters, which run a service on multiple hosts
from the start and handle outages of a host. Section 6.2 describes this
technology.

Table 6.1 shows the main usage properties of these two cluster types.
Figure 6.1 on the next page shows where cluster technology is used

nowadays, and how the cluster types map to usage patterns. This graphic
is for illustration of best practices only and is not meant as a definition
– there are many cases where one implements the examples illustrated
with different cluster technologies.

In general, host-cluster software on the operating system level does
not know about session states or transactional behavior. It differs from
middleware or application clusters. For example, Oracle cluster software
knows about transactions and allows a client to handle them gracefully.
This is not possible with clusters on the operating system level. After
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Fig. 6.1. Cluster usages. Directory servers and application servers have their own
clustering capabilities and usually do not use host clustering

all, the session state is kept in the application; host clusters will not
know anything about it. Therefore, on the host level, we are concerned
with overall availability of a service, not with individual sessions. Forced
restarts to keep a service running usually result in session termination
and are thus seen by the client – except when the service is sessionless,
of course. So this does not protect against loss of data, or data inconsis-
tencies, or loss of business transactions; that task is left for upper levels
or for the application software to handle.

6.1 Failover Clusters

As we noticed at the start of this chapter, the three most frequent outage
causes are hardware failures, operating system (OS) crashes, and applica-
tion errors. An interesting observation is then how such outages are typ-
ically handled. These are incidents and the IT staff will try to reestablish
the IT service as quickly as possible. For hardware errors, the defective
component is exchanged or repaired and the system is rebooted.
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Table 6.2. Comparison of normal system administration and cluster reaction to
failure categories

Failure category Normal reaction Cluster reaction

Hardware error Repair and reboot 2nd server (no repair time and no
reboot time, but failover time)

OS crash Reboot Service migration to other hardware
(no reboot time, but failover time)

Application error Restart,
sometimes reboot

Restart, sometimes service migration
to other hardware

For software errors, incident handling is most often not done by find-
ing and resolving the root cause. Instead, the system is just rebooted in
the case of an operating system crash, or the application is restarted in
the case of an application error. Most of the time this is sufficient to make
the service available again. Searching for the root cause of the problem
can come later.

Failover clusters implement the idea that one can automate that pro-
cedure. Instead of manual service monitoring, manual hardware repair
activities, and manual reboots or application restarts, we establish soft-
ware that does this for us. It handles the error case when an application
does not work as planned and when we can discover that misbehavior by
checking the service provided. Such error situations have already been
named: whole application crashes, application stalling due to egregious
resource consumption, crashes of the operating system itself, hardware
component outages, and others.

Instead of hardware repairs, we take a second computer system and
use that in the case of component outages. The second computer system is
also used in the case of operating system crashes, we do not bother with
automated reboots that might go wrong. Application restarts are tried,
and if they do not cure the problem, the second system is used again.

This is not a cure for these error situations; we should better call it a
workaround, as it does not resolve the actual root cause of the problem.
But starting anew with a clean state often makes problems disappear,
even though the root cause has not been removed. Therefore, restarting
and service migration to another host are no proper long-term means to
handle stability and quality problems of an application; but it may well
be the best short-term solution in terms of availability improvement.

Table 6.2 illustrates the relation between “normal” system adminis-
tration and automated failure handling by cluster software. It shows that
a cluster delivers now in an automated way what we did by hand before.
Basically a failover cluster is three things:

1. Additional hardware
2. Monitoring of services
3. Automated migration of services to the other hardware
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Overall, this cluster type is a kind of bastard. It fixes deficiencies of op-
erating systems and applications by providing workarounds, but does not
resolve the real causes. We need it mainly because current operating sys-
tems are not implemented well enough, and do not include that abstrac-
tion and migration functionality in the first place. The same holds for the
application interface that is used here. The class of application failures
handled by failover clusters should actually be resolved by improving the
application – but that is wishful thinking in our cost- and new-feature-
obsessed IT landscape, so we will have to live with these clusters for quite
a while.

Failover clusters are suitable for applications that hold state informa-
tion and where the application software has no inherent cluster function-
ality or where you do not want to use it. For instance, database software
is a prime example. Many database software products have no cluster ca-
pability, and those that do are often quite new and are not mature yet.
Also, applications are often only certified for specific releases of database
software and might not allow usage of clustered databases. File servers
are another example of suitable application classes.

On the other hand, Web servers most often do not keep any state in-
formation. Of course one can use failover clusters as well to raise their
availability, but they are much more suitable for another cluster type,
namely, load-balancing clusters, which will be introduced in Sect. 6.2 on
p. 176.

� Failover Clusters Need Hardware Independence

The main task of operating systems is resource management, and provid-
ing those resources to application software with an abstracted interface.
Originally, many of these resources were hardware-related, and bound
to a specific piece of hardware. For example, on mainframes, one explic-
itly allocated files on specific cylinders on specific disk drives. But these
dependencies on hardware components diminished over time; nowadays
operating systems provide resource abstractions for applications:

• Processes that are started on demand, be it due to an incoming net-
work request or triggered by another application.

• Long-running server processes (called daemon processes in Unix and
services in Windows).

• Jobs, i.e., processes that are scheduled by time and started either reg-
ularly or once.

• File storage for application programs and configuration
• File storage for data
• Disk storage for data
• Network interfaces, in particular IP interfaces

Failover clusters provide these resource abstractions in a completely
hardware-independent way. They are able to move allocated resources
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between hosts, and are thus able to migrate applications from one host to
another.

This functionality needs cooperation from the application. The operat-
ing system provides the aforementioned resources named as virtual enti-
ties, and the cluster software provides the functionality to move these re-
sources from one cluster node to the other. But hardware-specific resource
access is still possible. The application must not use any other resource
that is bound to the hardware, otherwise it does not work. For example,
it must not use the host ID, or the host name and bind functionality to
that. Section 8.1 on p. 217 spells out the requirements for applications in
failover cluster environments in detail.

� Failover Cluster Definition

Let us define first more precisely what a failover cluster is and then let
us look at the implementation concepts and the preconditions that are
needed for such a cluster.

A service is a set of applications, associated server processes and
jobs, data storage, and IP network interfaces that run on one com-
puter system at a time. Such a service is often also called a logical
host or a resource group.

A failover cluster is a combination of several computer sys-
tems, hardware configuration, cluster software, and the configura-
tion of the operating system and applications that allows to move
services between the computer systems of that cluster.

These computer systems are also called physical hosts or just
nodes.

Figure 6.2 on the next page illustrates this principle.

� Failover Cluster Variations

Failover clusters come in several varieties. In the most basic form there
are two physical hosts and attached shared storage. This “two-node con-
figuration” may provide one or several services. Figure 6.3 on p. 156 illus-
trates how services may be placed on the cluster nodes.

When only one service is provided, it will run on one cluster node
and the other node is not utilized. Such an architecture is called an ac-
tive/passive cluster. Typical examples are mission-critical big databases
that need all the computing power of one node and the second node func-
tions as a hot-standby or hot-spare system. Databases often do not de-
grade well performance-wise and need a minimum of available CPU and
memory resources to work. If we migrated another service to the node
on which the database server runs, that might reduce the available re-
sources to an amount that makes the database unusable. Therefore ac-
tive/passive clusters are a popular choice for this server type, to be on the
safe side with high availability for this important service.
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When several services run, and if they degrade gracefully in environ-
ments with reduced resources, they are normally distributed evenly over
both nodes, and in the case of failures all services are migrated to one
functional node. Of course, then one node must have memory and com-
puting power to run all services, albeit often with reduced performance.
Such an architecture is called an active/active cluster and is often used
for application or file servers.

If clusters have more than two nodes, the distinction between ac-
tive/active and active/passive is not as clear-cut anymore. For example,
services might be distributed over n−1 physical hosts, and the nth host
is a hot-spare node that is utilized if there are problems. All kinds of dis-
tribution of services over the physical hosts can be imagined, and happen
to appear in reality.

With the advent of host virtualization for midrange servers, in the con-
text of ever-increasing computer power in accordance with Moore’s Law,
this once clear-cut architectural distinction gets muddied even further.
As this is quite important in its own right, these developments will be
addressed later in Sect. 6.3.
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� Limits of Failover Clusters

Failover cluster technology has its limits though. There are several issues
that can happen where clusters do not help:

• Failover clusters depend on shared storage facilities. Data consistency
on this storage facility can be considered the single point of failure;
it is not part of a failover cluster’s objective to protect against logical
data corruption.
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• Software errors in cluster software. It is important to note that the
cluster software is a single point of failure in the whole architecture of
failover clusters. Cluster software errors typically cause outages of all
nodes and all services.

• Single points of failure creep in (e.g., during a change) and do not get
noticed.

• Components may not work in a failover cluster environment. Ex-
amples are databases where we know up-front that they cannot be
restarted automatically in a reasonable time frame after a crash, or
nonfunctional forced unmounts for some file-system types.

• Some components pretend to work in a cluster, but there are failure
situations where they do not live up to that demand. Therefore they
work “most of the time” and we still have a remaining risk of outages
if we use them. As an example, for some databases the backup opera-
tion must not be interrupted; failovers during that time are not han-
dled gracefully. On the other hand, there is no substitution for some
products; often one must simply live with that problem.

• Usage of cluster software places constraints on maintenance activi-
ties. A special problem is patch management: when we deploy patches
on all cluster nodes at the same time and the patch is erroneous, we
run into severe trouble. No physical host of the whole cluster will work
anymore.
Therefore, it is common sense to patch one cluster system after the
other. But then the application software must work both with the old
and with the new patch; luckily that is almost always the case. But
that one step at a time approach to patch management can only be
used for system patches – application software is installed only once
per cluster, and nonworking patches will render it unusable without
any chance to recover. To conquer that problem, staging systems are
needed that enable us to test patch application and functionality be-
fore they are put into production.
In summary, maintenance can render a cluster nonfunctional. Good
processes help to avoid that, but a cluster is not protection per se
against such failure scenarios.

In addition to this list, there may be the technical problems that will
be addressed in Sect. 6.1.1, where functionality of a failover cluster is
explained in more technical detail.

6.1.1 How Does It Work?

Let us have a look at failover cluster functionality in more detail. First,
we will check out the technical principles, then we will discuss in detail
service management and associated pitfalls.
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Functionality of Failover Clusters

The overall objectives of a failover cluster are:

• Retain availability of data
• Restore availability of service
• Recover from failures in an acceptable time

Potential failures are hardware errors, operating system crashes, and ap-
plication errors.

The focus of a failover cluster is on data availability and overall service
availability, not on sessions. Migration of sessions is a task that needs in-
telligence from the application level and cannot be done on the operating
system level alone. Therefore, failover clusters may abort user sessions.
Data consistency is not an objective, as already mentioned. This is a task
that cannot be handled on the operating system level, but which must be
cared for by the application.

Figure 6.4 on the next page illustrates the basic functional principle
that failover clusters realize. But let us have a closer look at those princi-
ples that goes beyond a schematic representation.

� Service Switch

A failover cluster manages services that are checked for availability and
can be migrated to another physical host. The technical term for such a
migration is service switch or logical host switch. For that to work, we
need a service declaration and lots of details must be right in handling
such a service – the next section will present these details. For now, we
will stick to the general view.

� Preferred Node

In almost all failover clusters, a service runs only on one physical host at a
time. In active/active clusters, a service usually has a preferred node, i.e.,
a physical host on which it it preferably runs. This approach is mainly for
organizational reasons – it eases planning of hardware resources needed
for a cluster. Each service running on its preferred node is the “normal”
state of operation that utilizes available hardware resources in the best
way. Switching a service to another node needs hardware resources there
and reduces available resources for other services that are already run-
ning on this physical host. As such, failovers are planned to be only tem-
porary; when the cause of the error has been determined and eliminated,
the service is switched back to its preferred node.

In active/active clusters, the nodes are sized to run their preferred ser-
vices, and additional hardware resources are supplied for the hopefully
special situation of a failover. This particularly works well when the ser-
vice degrades gracefully under increased load. For example, a Network
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File System (NFS) or a Common Internet File System (CIFS) service is
very easy to run in an active/active cluster, reducing available CPU and
main memory resources just makes the service go slower, whereas some
database systems cannot handle reduced resources at all below certain
limits. Then they grind to a halt and become unusable. For such services,
active/active configurations should be checked carefully to see if one phys-
ical node can really sustain all services that potentially run on it and still
deliver acceptable service levels.

� Shared Cluster State

A cluster needs a shared state: it needs to know on all the physical hosts
on which node each service is at the given moment. If there were a man-
agement node, this would be a single point of failure; outages of that node
would break the whole cluster. Therefore each proposed service switch is
communicated to all cluster nodes and is only done if the new service
location is accepted everywhere. As such, service switches have a trans-
actional behavior: either they succeed everywhere or they fail completely.

� Intercluster Communication

This intercluster communication is crucial for cluster functionality; there-
fore, its own dedicated communication paths are typically set up for it.
Most of the time, that is just a special redundant network connection on
specific network interfaces; if possible, utilizing cross cables without any
intervening switch. But cluster software may also utilize other communi-
cation methods, e.g., serial lines. The stable and unchanged communica-
tion path also avoids the risk that intercluster communication is brought
down by an erroneous reconfiguration, during a service switch.

� Heartbeat

But failover cluster software not only manages services and associated
resources, but also coordinates physical hosts. It is a necessity for cluster
software to know which physical resources are not available anymore; af-
ter all, this is often the reason for switching a service. A very special case
of such hardware monitoring is the test if a physical host is still running
at all. This test is done in very short intervals and is emphatically know
as heartbeat. Hosts that answer that test are accordingly called alive, and
hosts that do not answer are called dead. Heartbeat tests usually use the
intercluster communication path too. Thus, the stable heartbeat commu-
nication will be part of shared state management over all physical hosts,
as it should be.

� Split Brain Syndrome

By introducing the cluster heartbeat, we have introduced a new potential
source of errors though. Even if the intercluster communication path is
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redundant, it can fail – and then we are in deep trouble. A two-node clus-
ter illustrates that best: each node will think that the other node is dead,
and will start all services to make them available again. That behavior
is called a split brain situation. It means that the shared disk space will
be accessed by both nodes, both will activate the same IP addresses on
the same shared network, etc. As the minimum result, services will not
work. But then you will be lucky – it may also be that persistent data is
damaged beyond repair.

Some cluster products include further precautions: The failfast mech-
anism forcibly shuts down (“panics”) a physical host when it detects that
the node has left the cluster. This is done to ensure that no single node
will start its own cluster while the others are still alive. But it is not easy
to detect if one node is part of the cluster or not; further precautions are
necessary to do that.

� Quorum Devices

Since this problem has so severe consequences, some cluster products
protect against that risk by introducing yet another communication path
that is used to really decide which node is part of the cluster and which
is not. Shared disk devices are sometimes used for this communication
path, e.g., they are called quorum devices by Sun and disk heart beat-
ing or tie-breaker by IBM. Serial lines or network connections are other
means for the alternative communication path; but they often have dis-
tance limitations that make this requirement difficult to meet.

� Communication with Other Systems

It is not sufficient that a server is up. The clients or other servers must
also be able to reach the server. The cluster software must not only keep
a service running on a host that works, it must also check that this host
does not get disconnected from the network by a switch or cabling failure.

For that reason, clusters check the reachability of important servers
or other network components. Most often the reachability of the default
gateway router is checked, under the assumption that this router has
been made highly available itself and is a good approximation for network
connectivity. (Section 9.1.3 explains how to set up highly available default
gateways.)

There is more to do to assert that network communication with clients
works. Cluster services use virtual IP addresses, but actual communica-
tion in an Ethernet is not based on IP addresses, it needs a Media Access
Control (MAC) address. The relationship between IP and MAC addresses
is stored in Address Resolution Protocol (ARP) caches at each communi-
cation partner and is not updated quickly. Theoretically, one could have
a virtual MAC address that is one of the service resources and that is
migrated as well. But most cluster software does not implement that this
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way; it uses the MAC address of the physical interface instead. As a conse-
quence, ARP caches in the local Ethernet segment must be updated when
a failover happens. To trigger the update, the cluster software will send
an ARP broadcast after it has activated the service’s virtual IP interface
on the new cluster node.

� Service Dependencies

Services consist of resources (that is why they are also called resource
groups). When services are started or stopped, the resources must be ac-
tivated or deactivated in a specific order. This is needed because some re-
sources are needed by others; e.g., one needs to import the volume groups
to be able to mount a file system.

Some products represent the belief that is not sufficient to have re-
source dependencies. Instead, service or resource group dependencies are
provided as well. With that ability, we can specify that a cluster service
is only started if another one is active, somewhere in the cluster. As an
example, we can specify that the service database server must be active
on some cluster node before the service messaging server is started – sup-
posedly because the messaging server uses the database server.

Such dependency information does not protect the service from the
need to handle outages. If we look at the example from the previous para-
graph, a database server outage will cause nonavailability of it for some
time, namely, the failover time and maybe even the recovery time on the
new node. The messaging server should handle that outage and should
also know that it needs to reconnect because sessions will have been
aborted during the failover. If the messaging server cannot handle this
situation but needs a restart to function again, we should check if it is
possible to switch products and get a better one.

Services in Failover Clusters

Now that we understand basic cluster functionality, it is time to look at
cluster service management in more detail. This section will explain ev-
erything a failover cluster does with services: their declaration, activa-
tion, service checks, restarts, switches, and deactivation.

� Service Declaration

The declaration of a service is done only once, during implementation
of the cluster. All other actions, like activation, deactivation, and service
migration, are done repeatedly.

A service allocates a set of resources, using the cluster software. Such
resources may be:

• Server processes to start that run all the time
• Jobs to start regularly or once
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• Storage volume groups, with or without file systems
• Remote (network-attached storage) or storage area network (SAN) file

systems
• Network IP interfaces

For each resource five actions have to be defined:

1. How to start the resource
2. How to test the resource for availability, and how often it should be

tested
3. How to restart the resource
4. How to stop the resource
5. How to abort the resource, i.e., how to force it to stop

Of course, knowledge about generic services is already available in the
cluster software; one does not need to specify how a file system is mounted
or unmounted.

In addition, one must declare dependencies between service resources.
Often, this boils down to specifying the order of starts and stops. When a
server process needs a network interface to be established, the network
interface is started first. Likewise with mounts of file systems and other
resources.

� Service Activation

A service may be activated at boot time, or activated manually. Dur-
ing activation, hardware-related resources are made accessible: storage
volumes are activated (sometimes called “imported”), file systems are
mounted, virtual network interfaces are established. This is done by the
cluster software; no service needs to supply code for this. Then server pro-
cesses are started; information on how that is done is part of the resource
definition.

It is important that the service start is idempotent. That means that
we must be able to activate it when it is already running without causing
any harm. Usually this is implemented with a semaphore that is checked
at the start time to see if the service is already running. A second start is
then aborted.

� Service Checks

The cluster software will now check the availability of each resource in
the specified intervals. If the check delivers failure, or if the check times
out, the resource is deemed inactive and the cluster will try to restore
service availability.

This is important: cluster software does not know about any service
or any application per se. It knows only about the registered checks for
a resource, as its whole world view revolves around the registered actions.
Therefore, checks must be programmed very carefully and must be very
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robust – otherwise a cluster might think that a service is still alive though
it is not (false positive), or a service is thought to be defective, although it
just needs a bit longer to answer the request (false negative).

Service checks must pay special attention to timeouts. They are needed
to detect hanging processes or unresponsive hardware. But they must
take into account checks on other system stack levels as well; timeouts of
service checks must be coordinated with other timeouts on the computer
system.

A good illustration is disk problems: when there are disk failures in a
mirrored configuration, the disk drivers themselves will wait for timeouts
and will attempt several retries. Only after all these retries have been
unsuccessfully finished is the disk declared nonfunctional and removed
from the mirror. That timeout by the disk driver might be longer than
the service check timeout at the higher level – and that timeout might
trigger a service migration before the defective disk has been removed
from the mirror. When the disk subsystem is activated at another cluster
node, the disk failure occurs again and the same error situation occurs.
“Failover ping-pong” is likely to occur at this point: endless switching of
the service from one cluster node to the other.

A functionality of elaborate cluster products is a framework for suc-
cessive checks and associated reactions. For example, one can define a
finite state automaton over test results or check output messages. If a
check delivers an error or a warning, one can either trigger immediately
restart or switch actions or put the check subsystem into a different state.
In that new state, different checks can be made to determine the need for
appropriate action.

Such service check frameworks can lead to very elaborate implemen-
tations – in the worst case, nobody except the implementor understands
them. During their realization, we need to remember that the first prin-
ciple for good high-availability implementations is KISS: Keep It Simple
and Straightforward. It is also best practice to add a description or docu-
mentation on the server itself, in a format that can be read without access
to graphical user interfaces. An ASCII file can be read from everywhere,
also remotely when a system administrator is logged in via cell phone,
whereas files in Word or PDF formats are often not suitable for emer-
gency situations.

� Service Deactivation

Service deactivation is easy in principle: all resources must be stopped
and deallocated:

• Server processes are shut down with either a proper command or by
killing the process.

• Virtual network interfaces are brought down.
• Remote and SAN file systems are unmounted.
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• Storage volume groups are deactivated. Some products call deactiva-
tion of volume groups “exporting.”

Of course, the devil is in the details: quite often resources cannot be
stopped easily in error situations. Section 6.1.2 on the following page dis-
cusses real-world experiences in more detail.

� Service Restart

When a service check detects that a resource is not available anymore,
that resource can be restarted. A service restart can also be triggered
manually. The method of restarting is known for hardware-related re-
sources, and part of the resource definition for process resources.

Restarting means to deactivate a resource and activate it again on the
same cluster node. Some cluster implementations prefer to deactivate the
whole service (all resources of it) and activate it again. The aim is mini-
mization of service migration; often a restart is sufficient to reuse a ser-
vice again. This method helps again temporary exhaustion of resources,
e.g., because of memory leaks.

We usually try to avoid service migration because it has its own risks
associated with it. Switching over hardware resources to another cluster
node might take a long time, or even might not work at all. In addition,
if the other cluster node runs other services, their performance will be
reduced by the additional load. Therefore, we prefer that each service
stays on the node where it is usually located.

� Service Migration (Aka Failovers or Switches)

When an host is not alive anymore, or when a service restart does not
result in a functional service, failover happens: the service is migrated
to another node in the cluster. In principle, failovers are straightforward:
all resources are stopped – server processes are stopped if they are still
running, file systems are unmounted and disk volumes are deallocated,
(virtual) network interfaces are brought down, etc. Then all nodes in the
cluster are informed about that service migration, and the service is acti-
vated on the new node.

The migration proceeds in the following steps:

1. Shutdown the service, or do a forced shutdown, or do a failfast opera-
tion

2. Activate (import) storage volume groups with a SCSI reserve
3. Mount file systems
4. Activate IP addresses and send ARP broadcasts
5. Start services according to dependencies

If there is an error at any of these steps, the migration was not successful.
In practice, failovers always carry associated risks. Service migration

might not work owing to many errors, not least that nodes within one
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cluster might differ owing to maintenance work and there might be prob-
lems to activate a service on the new node.

6.1.2 Failover Cluster Implementation Experiences

When a project implements a solution that utilizes a failover cluster, it
must be aware of several important issues that must be resolved for suc-
cessful implementations. Some of these issues are requirements for appli-
cations that shall be deployed; these are described in Sect. 8.1 on p. 217.
In this section, we concentrate on the system requirements and system-
level issues.

Failover Success Rates

Experience from many companies shows that a good cluster is one where
only 90–95% of failovers are successful. If more than 25% fail, this is a
bad cluster implementation. There have been situations where only 50%
of failovers were successful; these were very bad implementations.

The difference between good and bad clusters is always the same: bad
clusters have too complex setups and the quality of operations is not good.
Operational quality also includes proper noncluster monitoring. It is not
sufficient to rely on the cluster-internal monitoring. Instead we need to
make sure that independent monitoring is set up – and that staff with
appropriate skill check regularly that all services are running smoothly.
For mission-critical servers, this should be done every day.

But still we will probably have 5–10% of failovers that do not succeed.
This is a limitation that is inherent in cluster technology. The remaining
failures have causes that are too complex to be handled by the cluster
actions: the rather primitive approach of restart and reboot does not work
for them.

In theory, one still has some time left now. At the lower end of high-
availability service level agreements (SLAs), we might have 1 or 2 h to fix
the problem. If the server is mission-critical, the SLAs might allow only
15–30 min to solve the problem and still count it as a major outage. If a
skilled system administrator is at hand, this might even be possible – but
frankly, this is an exception. In the normal case, the system administrator
does not fix the problem in that half hour or might not even be on site.

Therefore, when a cluster failover fails, it is best to declare a ma-
jor outage right away. Now is the time for a prepared disaster-recovery
process to kick in. This does not mean that everything is migrated to
the disaster-recovery system at the remote disaster-recovery site imme-
diately. It means that the preparations for such a migration start.

Since we are now in the major outage case, our disaster recovery SLAs
must be fulfilled, in particular the recovery time objective. But recov-
ery time objective times are much longer than maximum cluster outage
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times: they are usually in the range of several hours. While the business
owner is informed about the problem and while the decision about dis-
aster declaration is made, system administrators can have a look at the
failed system. Now, with more time on their hands, they can try to fix the
problem and get the cluster running again. The big danger is that they
try for too long and that migration to the disaster-recovery site is post-
poned so long that even the recovery time objective is not maintained any
longer.

This is the reason why it must be emphasized that repair actions af-
ter failed service migrations are part of the disaster-recovery process, and
not part of the normal high-availability operation. The disaster-recovery
process must specify in advance how much time is allocated for the at-
tempts to fix the problem with the primary systems, and it must specify
the time when the switch to the disaster-recovery site has to be pushed
with all strength. This demands human judgment and is not in the realm
of automated cluster actions anymore.

Good Service Checks Are Hard to Design

Good checks are very difficult to define and realize in practice. It is always
a tightrope walk to minimize the number of false negatives and false posi-
tives. One will not be able to avoid them completely, as application behav-
ior cannot be observed and predicted in a reliable way. If there are formal
SLAs, these are the best guidelines for choosing the thresholds. If the SLA
defines a maximum reaction time of 60 s, our check timeout can be set
to that interval and we can deem the service nonfunctional afterwards.
Therefore, good resource checks always have configurable timeouts, to be
adaptable to different SLAs.

Checks are done periodically. We need to assure that the same check
does not run twice at the same time. For example, when a check itself
needs 45 s, then starting it every minute is risky – in the case of a high
load on the computer system the check might need longer than 1 min and
this could lead to deadlocks or overloads.

There is also the important question of what we can and what we
should check. We can check for the existence of a resource, we can check
for its functionality, and even the functionality check can be on different
levels. Let us consider a database server as an example:

• We can check if the database server process is running, by looking at
the process list.

• We can check if the database server accepts requests, by looking to see
if a process listens on the port of the service’s address. Such a check
might utilize the netstat command, for example. Of course, this is
only possible if the database accepts requests over the network at all.
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• We can check if the database server responds to requests, by making a
query that is application-independent, e.g., we may query the system
catalog. We need appropriate privileges for that test.

• We can check that the application data may be accessed correctly, by
querying an application table. If the query succeeds, it is not neces-
sary to check for modifications to work. This check might be expensive
in terms of computing power, depending on the request. It must be re-
alized very carefully, otherwise performance of the production system
could be influenced beyond acceptable limits.

Please note that we cannot say a priori which check is best. We might
want to have a very quick and resource-sparing check, then the process-
existence or the port-listening check might be best. Or the server might
need authentication and we do not want to store credentials in clear text
in the check code or configuration; then application-level checks are out of
the question. Proper selection of an appropriate check is always a matter
of good cluster design.

When one selects request, response, or functionality checks, one must
also consider their consequences for metrics and accounting. Service us-
age is usually monitored for several purposes: to create statistics about
end-user usage, to create information about used capacity, and sometimes
to create accounting records if the service is paid for by transaction usage.

Let us use Web servers as an example for the logging problem. Their
logs are usually analyzed, to give the content owner information about us-
age, session duration, travel paths, transfer capacity, entry points, search
engine referrals, etc. If one adds a request every minute to check for ser-
viceability, that adds 1440 requests per day. Depending on the overall
traffic, that might be negligible or not. Of course, one can avoid that er-
ror introduced by the checks: if one can identify those requests in the log,
one can discard them before statistical analysis. Or one can avoid logging
them in the first place.

While wrong logging is often only a nuisance, application checks can
cause financial consequences when service usage is paid per transaction.
Many industry pundits declare that a “public utility” model is the service
model of the future; where application services are outsourced and paid
for by usage, software does not need to be bought anymore. If the out-
sourcer is responsible for the application’s availability, a failover cluster
might be utilized – but then you, as the customer, do not want to pay for
the internal application checks of the outsourcer’s infrastructure. Then it
is important if availability checks are detected and not accounted for.

Problems at Service Deactivation

The problem is quite clearly what happens when one of the stop actions
does not succeed. If a server process happens to hang in a system call, it



6.1 Failover Clusters 169

might be noninterruptible and cannot be shut down. Nothing short of a
system reboot will then terminate the process.

In the same way, file systems often cannot be unmounted as long as
processes still use them. Many file systems offer a forced unmount func-
tionality, where one can force the unmount with the explicit risk of data
inconsistencies. But then, this forced unmount happens not to work well
either – sometimes, the system hangs even in that forced unmount and
we need to abort the whole system with a failfast operation. Luckily, this
normally is not a big problem, since journaled file systems provide quick
recovery from such failure situations.

So in the end, while it is typically very easy to deactivate a service un-
der normal circumstances, deactivation in error conditions is connected
to a whole bunch of real-world problems stemming from imperfect im-
plementations. As a result, the deactivated service resources might be in
inconsistent states (e.g., unclean file systems) or it might not be possi-
ble to deactivate them completely. We are forced to invest in subsequent
manual work to get a clean system again.

In the latter case, only rebooting the physical host might help. This is
often a poor choice though – more services might run on this node, and
they need to be migrated to another cluster node first. Cluster software
will not do this automatically though, and thus rebooting a node with
several services running on it is always connected with raised risk.

But there is new hope on the horizon. Advances in host virtualiza-
tion are enabling usage of this technology in more circumstances than
were possible in the past. Section 6.3.2 on p. 184 explains this technology
in more detail. It can be put to good use for failover clusters by putting
each service into a virtual host. Rebooting that virtual host then becomes
practical and does not influence other services running on other virtual
hosts on the same physical host. Though it must be said that at the time
of writing this book, this approach has not made inroads into common
cluster products and they must be configured manually.

Service Migration Must Not Take Too Long

It is usually possible to define in the cluster software how long it should
wait for the first check after a service has been activated or migrated.
But this time span also sets an upper limit on how long the start of the
service’s resources may take. The limit must not be too high, of course
– the objective of a failover cluster is provision of ongoing service, after
all. But it must not be too short either, since the service must finish its
activation in that time span.

Long activation times can happen quickly. Let us assume that the ser-
vice’s file system is some terabytes that are spread over 400 disks in
an enterprise-storage system or a SAN. If each disk gets its own LUN,
400 LUNs must be started. Many operating systems handle this task in a
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way that needs lots of time. So, it is much better to combine several disks
into a few large LUNs.

But such normal-case considerations are not sufficient. This activa-
tion time limit must be thoroughly analyzed in the light of potential error
situations. Of special interest are situations where the data are not con-
sistent and must be checked in some way.

As an example, let us look at a failover cluster with a database server.
When the database service needs to be switched to another node, the
database content might not be consistent. The database management sys-
tem will start consistency checks and recovery actions. If only some redo
logs must be replayed, this will be done in a short time frame. But if in-
dexes must be rebuilt, the recovery might need quite a long time and the
service needs too long to start – leading the service check from the cluster
software to fail, and the database to switch to yet another node immedi-
ately. Probably this will cause an endless loop of service migrations, from
one node to the other and back again. These kinds of endless migration
loops are sometimes called failover ping-pong.

In fact, there was a case where a database (MySQL in this case) was
used first without transaction support, and where the startup consistency
checks in the case of aborts needed so long that this constellation could
not be operated properly in a failover cluster environment. Either we
would have to compromise with the service checks (e.g., check only for
running processes, and not for properly answered queries) or we would
have to skip consistency checks – not a good idea, of course. In the end,
the MySQL version was used that has transaction support, even though
it comes with a performance penalty and needs much more space to store
its data.

In summary, the system configuration must ensure that the start of
all resources can be completed in the allocated activation time. This must
include consistency checks, establishing consistency again.

Use Journaling Wherever Possible

The report of previous experience concerning switch times leads to a
corollary. Many storage systems, be it databases or file systems, employ
journaling techniques. In fact, in the context of high-availabilty systems,
all operating systems and all storage options deliver that possibility.

Section 5.2 on p. 108 presented that topic in more detail. Here, it is
sufficient to say that changes are written to a journal first; operations
that belong together and their successful completion are marked as well.
This makes for fast recovery after crashes, since the system simply has to
replay completed changes and can undo uncompleted changes. Violà, the
data is consistent again.
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So whenever you configure your storage on the operating system level,
make sure that you enabled journaling. There is no excuse for not using
it.

Crashes Can Leave Garbage Behind

Suppose that your service crashed and the cluster software switched it
successfully to another node. Everything’s all right and in order, isn’t it?

Well, in practice, it is not. Every switch has the potential to introduce
errors that will only become visible at a later time. And we will want
to switch back at some time, especially if we use the common setup of
preferred nodes for services. Then these errors would be waiting for us,
and that must be prevented. Sometimes crashes leave resources behind
that prevent service activation. Most often the cause is a lock file that
is checked during startup and prevents the start of a server process. Or
some shared memory segment is allocated and not released again. There
are lots of other possibilities for things that can go wrong.

This is a big difference from the operations of a normal server. When
we reboot a server, that reboot most often creates a clean state. But a
failover leaves the old system in the defective state and often manual
rework is necessary to get it running again. Clusters are not fully au-
tomated, they must be attended to. Automation is restricted to failure
discovery and workaround handling, but does not cover repairs.

Of course, most of these problems can be attributed to bad software
quality. Manual intervention after crashes to be able to restart any ser-
vice should not be necessary. Simple testing of the existence of a lock file
is a very bad idea – nevertheless, it is used often enough that one has
to ask if developers do not think about reliable operations of their soft-
ware. Even worse is that there are some vendors who do not react to such
problem reports and take manual intervention after crashes as granted.

The bad news is that this is something that you have to learn through
experience. You can test for it by crashing your system deliberately, but
you can only hope that you will hit the problematic situation during the
test. After you have encountered a problem, it is worthwhile investigating
the root cause of the problem and trying to change your resource start to
cope with that problem. Over time, you will improve the reliability of your
service switches.

Sharing Directories Between Services Is a Recipe for Disaster

Directory names should be different for all services on all nodes. No ser-
vice may share directories. Only then can these directories be placed on
service-specific volume groups.

There will be exceptions, and for each exception the impact must be
analyzed. As long as the exception concerns only temporary files that do
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not keep persistent information, they are fine. Proper examples are pro-
cess identifier (PID) files in /var/run – but note that it is advisable to
introduce subdirectories for each service there for access rights and main-
tainability reasons.

All persistent information must be stored on service-specific volumes.
Storing information on system volumes that are shared between several
services is a no-no and must be strictly avoided. If some application de-
mands it (e.g., insists on data files in /var) and cannot be changed, one
might often utilize symbolic links to store the actual files somewhere else.
But, frankly, we should not trust such an inflexible application anyhow,
and should question if it is fit for enterprise-level IT deployment. With
such applications, you will have many more problems in other areas as
well, and you should look for a replacement immediately.

After all, sharing program files between several services introduces
dependencies between these services that were not there before: they are
tested with the installed version of the shared software. If that shared
software is to be updated, tests with all services must ensure that they
still work after the update. All services are also affected by the update and
must be restarted, maybe data or the configuration must be migrated too.
In the case of installation in the service’s storage area, updates could be
approached independently.

Installation and Packaging of System Tools and Configuration

Sometimes programs and configuration files for services are installed on
system volumes. Configuration files in /etc are the prime example: many
applications insist on that location. In that case, care must be taken that
updates are done on all physical hosts to an identical state. Usually this is
done properly initially; problems occur during updates. Using the operat-
ing system’s packaging and installation method for self-installed software
as well is a real boon that helps with coordinated roll-out of patches and
program updates.

But synchronized configuration file updates are a drag. Programs ex-
ist that allow actions to be done in the same way on several hosts at
the same time, e.g., the SourceForge project clusterssh. But often system
administrators forget to use them because they want to try out the con-
figuration first on one node and then update all the other ones. Or they
have other excuses; experience shows that over time the configuration of
physical hosts tends to come apart.

A possible escape from that dilemma is usage of host configuration
tools like Opsware or cfengine. While these are often promoted as tools
for effectively managing a large number of hosts, they can be utilized as
well just for the physical hosts of a cluster. Of course, not only for system
configuration, but also for configuration of an application that is installed
on system volumes.
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Another method for keeping system files in sync is file synchronization
tools like rsync. This can be used both for program files and for configura-
tion files. Mirroring program files that have been installed by a package
system does not mirror the package meta-information though. Then the
information about the version and installation time of an application and
which files belong to a package is only available on the installation host
and not on the replication targets. If the installation host breaks down,
this information is lost. It is up to your management and operations prin-
ciples if that bothers you. Of course, it should. . .

Installation package systems cause more problems. Preferably, appli-
cation software should also be installed using standard software pack-
aging methods. That procedure also delivers integration into standard
system management processes. Meta-information about the software ver-
sion, files that belong to a package, changes to installed files, and so on
are readily available. Asset management systems, or agents for a config-
uration management database, just work. But this implies that all soft-
ware updates are done on one specific node, the preferred node of that
application. Otherwise the consistency of the package database would
be destroyed. Care must also be taken for the case when the preferred
node’s system volumes get corrupted – while the application itself will be
switched to another cluster node and will run without problems, meta-
information needed for updates might get lost.

Be aware that there are often hidden parts to application configura-
tion. For example, it may be that the application’s administrator needs
sudo rights for some commands on the cluster. These rights must be kept
current on all cluster nodes; it is a usual error to update them only on the
current node and then one will have surprises after switches. But these
surprises often come in incident situations – and especially there they
hinder proper resolution of current issues. Pay attention to such issues
that are small on the surface, it is worth it.

A final note on installation: if your enterprise utilizes the IT Infra-
structure Library (ITIL) or equivalent service management processes, it
might have established a configuration database. Make sure that the con-
figuration database knows how to handle failover clusters. Many simple-
minded applications do not cope with the fact that configuration items
can be moved freely between different hosts and must be associated with
a logical host that is actually not a full machine.

System Logging Done Correctly

Logging in application-specific files is a matter of application configura-
tion and will be looked at there. But operating systems, cluster software,
and also applications often use the syslog service. Thus the logs by de-
fault end up on the physical host where they are created. After a crash of
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those physical hosts they might not be accessible anymore, and important
resources for problem root cause analysis might be missing.

One has to decide for each project, if that is acceptable. If syslog in-
formation mainly consists of log entries for the physical host, or if only
uninteresting parts of the application log to syslog, then you might re-
frain from bothering with the setup of complicated log solutions.

But if you will need those logs – and remember, logs are important for
failure analysis – you are well advised to plan usage of a syslog server.
If you have already a solution for a central syslog server in place, you
can just use it. Most probably, that solution will provide proper reporting
facilities, will have looked already at the necessary security implications,
and will be a high-availability solution itself.

If you need to set up a dedicated syslog server just for your high-
availability cluster, you will have to pay attention to several important
issues:

• Syslog service is notoriously unsecure. There are syslog implementa-
tions available that utilize TCP and provide better authentication, or
even encryption for confidentiality. Depending on the content of your
logs, these alternative implementations must be deployed.

• If you have a larger cluster, or if you use a syslog server for several
clusters, simple access to files may not be enough for log analysis.
A proper reporting interface is needed then.

• You might need to provide views on the logs. For example, an applica-
tion administrator might need to have a view of just the logs for his or
her application, without confidential information like passwords.

• Logging is almost always associated with user-related information
that needs special protection, for privacy or security reasons. Of-
ten, regulatory or other legal provisions exist. Retention policies,
backup policies, log archiving, and rotation must be clarified and im-
plemented.

• Your shiny new syslog server might be a single point of failure; if it
fails, your logs will not be accessible anymore, and current logs will
not be stored.

Of course, it is a judgment call if a syslog server must be in a high-
available environment itself. For sure, this will not be an easy decision
and there is no technical guidance for it. Relevance and importance of
logs must be decided on a business level.

Regular Batch Jobs in a Cluster Environment

The standard tool for job management on Unix systems is cron. Cron
does not cope well with failover clusters though. Cron jobs have no condi-
tion that guards against execution, i.e., that is checked before the job is
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started. But the jobs need access to service-specific resources that might
not be there when the logical host is currently on another cluster node.

We have a simple solution for that problem. A script onloghost that
controls job execution is easy to write. It takes a logical host name and a
command as parameters, and calls the command only if the logical host is
currently activated on that cluster node. All cluster-related jobs use this
tool, and all jobs are installed on all cluster nodes. As the only drawback,
the jobs must not use I/O redirection to file systems on service volume
groups. But even if they assume that, this can be easily remedied with
small wrapper scripts.

Backup and Archiving

Backup and archiving usually associate data sets with host identifica-
tion. In its configuration, it is specified which file systems, directories, or
database volumes are to be saved.

It must be assured that volume groups that are associated with ser-
vices are not backed up by the physical host’s configuration. Instead, each
logical host needs its own configuration where associated data is speci-
fied.

Also, each logical host needs its own backup job. In those cases where
the backup is initiated by the backup server, nothing needs to be done for
that. In that case, the backup server will contact the logical host on one of
its logical network addresses and will get the data from there. Of course,
that implies that the backup client can be started on the logical host, or
that a client-side daemon is running as part of the service’s processes.

For client-initiated backup jobs, care should be taken that the service’s
IP address is used for connection to the backup server. Many backup prod-
ucts associate data sets with hosts by means of IP addresses, and by de-
fault the physical host’s address would be taken, which would lead to a
false association.

From the viewpoint of a backup system, logical and physical hosts are
the same. It is the task of system administration to configure the backup
properly, and to ensure that all relevant files are covered.

If we did not do this, backup of a physical host would save all the
data from the logical hosts that is there at that time. When a failover
happens and the next backup run is started, all these files suddenly do
not exist anymore at the old cluster node, but have sprung into existence
at the new node. First of all, this will result in lots of superfluous network
traffic that also stresses the systems without necessity. While the backup
system will delete lots of data on the first physical host’s backup save set,
it will transfer and save the same data for the send host’s backup.

More subtly, an important functionality of a backup system will be lost
as well: most systems allow several generations of files to be kept and
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we can select the version at the restoration time. The erroneous delete-
and-save-anew behavior described earlier destroys that capability as no
generational information can be constructed.

It should be pointed out that backup in high-availability environments
is usually only done for the convenience of users. They shall be able to re-
store single files or a small set of files. This is not appropriate for system
error situations, not from a high-availability point of view and most of-
ten also not from a disaster-recovery point of view. If larger data sets are
involved, restoration times in the case of errors will be longer than maxi-
mum outage times and the recovery time objective. Therefore backup and
restoration is seldom a method that is helpful for our objectives.

Testing

Make extensive tests before you put a failover cluster into production.
Do not be confident in testing situations where the cluster works. Try to
produce scenarios where it does not work. Trigger hardware and software
errors and see how the cluster software copes with it.

Be sure to retest when configuration changes are made, even though
they might not seem affiliated to high-availability services at first. In one
instance, an agent of some monitoring software caused a hanging cluster
node when it was installed – this was not tested well enough as it was
seen as low risk and not associated with the running servers. Neverthe-
less it was a change on all cluster nodes at the same time and led to a
nonfunctional cluster. The lesson learned was every change should have
failover tests.

Ideally, this is done on a test system, but often the budget does not
allow hardware to be bought for a complete additional cluster. Then host
virtualization, as described in Sect. 6.3.2 on p. 184, might be a method to
simulate a cluster environment with restricted resources.

Of course, one must be stubborn for that. Such tests can become very
expensive, and sometimes their value is not seen, especially when work-
ing under a tight budget and time restrictions as we usually do. Never-
theless, it is our task to stand up for proper work. If the service does not
need such tests, the chances are high that the high-availability environ-
ment would not be needed overall and that one would be able to save even
more money by not using a cluster.

6.2 Load-Balancing Clusters

Generic load-balancing clusters are used for services that do not need to
keep their state between requests. They work by distributing incoming
requests to a set of hosts that process these requests. All those hosts pro-
vide the same service: they are the nodes of the load-balancing cluster.
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Most often the request distribution is done by a load-balancing device,
but – as we will see later – there are also simplistic methods that do not
need such a device.
The prototypical examples for services that are predetermined for load-
balancing clusters are as follows:

WWW services as HTTP requests, being stateless, can be distributed
over as many Web servers as needed. Of course, this mostly scales for
static Web content. For dynamic content, application and database
servers will be utilized; for them generic load-balancing technology is
not appropriate. Instead, middleware clusters or failover clusters will
be utilized for the back-end systems.

Directory services like Domain Name Service (DNS) and Lightweight
Directory Access Protocol (LDAP). These services are characterized
by high read and low write volumes. Write operations will be syn-
chronized between the servers by application-specific means, and each
server can carry out read requests on its own.

Load balancing comes in different varieties, and is made for differ-
ent reasons. While we naturally want to emphasize its role for high-
availability solutions, it must be made clear that most often this is not the
main objective. Most of the time, load balancing is introduced to improve
performance, as a solution to the problem that one system is not power-
ful enough to handle all requests. From this performance viewpoint, dis-
tributing requests from the network to several systems to get a balanced
usage, come the alternative names of load balancing, traffic management
or application-level switching.

Owing to the usual emphasis on performance and traffic management,
you must be careful if you utilize load balancing in a high-availability ar-
chitecture. We must assure that we do not get a single point of failure with
the load balancers. We need to check that solutions are high-availability
clusters themselves and that they preferably use redundant hardware.
Therefore, introducing load balancing equipment can raise your failure
risk, or even introduce a single point of failure in your architecture if not
done properly. Always pay attention to the means to handle failures, and
also for disaster recovery of load-balancing approaches.

Most of our current systems are not simple client/server systems any-
more; they utilize an n-tier architecture, with at least a front-end tier
for the user interface, a midtier for business logic and transaction man-
agement, and a back-end tier for data services. If the front-end tier uti-
lizes Web technology – be it an HTML interface or with Web services –
it is an obvious candidate for load balancing. Both application servers in
the midtier and database servers in the back-end tier are stateful and
need to utilize different concepts for high availability. Often, they are in-
herently distributed systems and support application-level clustering out
of the box; this is handled in detail in Chap. 7. For database servers,
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failover clusters, as explained in Sect. 6.1, are also often utilized, since
the database-internal clustering possibilities are still quite new and not
always stable.

Load-balancing appliances sometimes come with additional function-
ality. They are also utilized for security improvements and scan incoming
requests for validity. In addition, they can provide Secure Sockets Layer
(SSL) accelerators to ease the load on Web servers and simplify key and
certificate management. Especially if you provide a farm of servers for
SSL-encrypted connections, such an appliance can be worth every cent
as managing keys and certificates on all nodes of that server farm in a
proper and secure way can be very demanding.

6.2.1 Load-Balancing Approaches

Basically, there are three architectural patterns that can be utilized when
a load-balancing solution is implemented:

1. DNS-based load balancing is the oldest and the simplest architec-
ture pattern. But it is also one of the most stable, has the least risk
associated with it, and is very robust. Basic DNS load balancing is
very cheap, whereas sophisticated appliances have their associated
price tag. It is used very often, mostly in Internet or WAN environ-
ments, to enable global applications.

2. IP load balancers are appliances that distribute traffic on a circuit
level. They usually rewrite IP addresses in the network traffic and
introduce a network address translation (NAT) layer into the archi-
tecture. Since one buys a device, this approach is sometimes called
hardware-based load balancing as well. This solution is not cheap,
but functions well and is extremely efficient; its robustness is also
very good most of the time. Its primary usage is in LAN environments,
to balance network traffic and server utilization.

3. Reverse proxies implement software-based load balancing on the
application level. As with all application proxies, they come both in
transparent and in visible flavors. They can rewrite requests as they
want and will provide unmatched flexibility. Reverse proxies are ro-
bust and cheap, but not fast. Their primary usage is also in LAN
environments, if IP load balancers are too expensive or if extensive
request rewriting is needed.

Let us have a look at each of these patterns in turn.

DNS-Based Load Balancing

Load balancing is an old technology that recently found itself in the spot-
light with the increase of n-tier architectures and HTTP-based front-end
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access methods. Its origin was at the dawn of two-tier client-server archi-
tectures and early TCP network design.

When the DNS was designed, it had to be robust against nonreach-
ability and network failures, i.e., high availability was one of the prime
design objectives. The DNS maps names to resources, e.g., host names
to IP addresses, or domain names to name servers. The DNS architects
introduced early on the ability to use more than one name server for a
domain, and the Internet agencies later codified that potential to be a re-
quirement. These name servers are equally authoritative for the domain;
all of them are required to have the same information. DNS servers usu-
ally give out name server information about a domain in a round-robin
fashion: every request gets the next name server as the first response.
Owing to this round-robin principle, over all queries, all name servers
share the request load.

The same redundancy is allowed for other resource information as
well. In particular it is used in the mapping from host names to IP ad-
dresses, in the so-called A records. A host name can have many A records,
and the name server will return one of them, thus distributing the traf-
fic for that named service to different addresses on different computer
systems.

Example 1 (Load-balancing DNS configuration). Such DNS config-
urations are very simple. In the zone file, we only have to specify an entry
for each address, using the same name. A simple load-balancing configu-
ration of a Web server with the name www would look like

www IN A 216.239.59.99
www IN A 216.239.59.103
www IN A 216.239.59.104
www IN A 216.239.59.147

Of course, we would use our own IP addresses and not those of Google
that are cited here in this example.

Violà, that is all that is needed. Load balancing on the cheap.

But most general-purpose DNS servers provide only basic implementa-
tion of this load balancing. Their behavior could probably better be called
load distribution or load sharing instead, as they do not take into account
the state of the request-receiving systems. They have only very limited
selection of load-balancing methods, e.g., the popular BIND software –
the most often used DNS server on the Internet – provides only selection
methods fixed (in order of definition), cyclic (round robin), and random
(arbitrarily chosen). Section 6.2.2 on p. 181 delves deeper into existing
load-balancing methods.

Dedicated load-balancing systems for global application delivery often
utilize DNS-based load balancing. Their address selection mechanism is
highly configurable and takes many parameters into account:
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• Current load of target system
• Geographic location of requester and server system, with the assump-

tion that geographic nearness also implies good network connections
• Previous requests from the same client
• Past load distribution
• Others

These appliances also work with very short cache timeouts (techni-
cally called time to live, TTL). Usually, stable DNS entries have a high
TTL and encourage aggressive caching by clients. In load-balancing en-
vironments one wants to have more control over the distribution of ad-
dresses, e.g., to quickly add some more servers or kick some server out in
case of availability problems. This additional control comes at the price of
reduced caching and increased DNS request traffic.

DNS-based load-balancing has one important advantage: for all its
simplicity, it does not introduce an additional single point of failure into
our architecture. DNS is needed anyhow for all services, and this elemen-
tary service will be deployed in a highly available infrastructure architec-
ture anyhow. Redundant DNS servers in diverse geographic regions are
a well-handled and well-understood technology that cares both for high
availability and for disaster recovery without further ado. If such simple
forms of load balancing are actually sufficient, it is a great solution that
is easy to deploy and cheap to implement and to maintain.

Hardware-Based IP Traffic Management

IP load balancers are utilized most often for Web servers, where usual
commodity hardware cannot handle millions of requests per day or even
per hour, but a server farm is a cost-effective way to provide that service.
These appliances originated in the network world, and are usually also
high-end layer-3 switches.

As a nice by-product and of more interest for this book, they also raise
the availability of the service – as long as the load-balancing appliance
is functional. Current versions of such load balancers all have cluster-
ing abilities and will usually be deployed in redundant installations. But
these abilities are often new and complex to configure, and mailing lists
abound with questions about proper setup. Be warned that you – striving
for a high-availability solution – should only implement them as a cluster
and that you should get proper training for your staff to handle incidents
and problem analysis.

These appliances take IP requests and forward them to the actual
servers. Of course, network addresses in those IP requests and in re-
sponses are rewritten for forwarding. Introducing a NAT layer into a so-
lution architecture can lead to problems if the application demands end-
to-end authentication. But luckily, very few applications do and those are
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usually very dependent on the state and are therefore seldom eligible for
hardware-based load balancing anyhow.

Several methods are usually available for recipient selection; they are
discussed in Sect. 6.2.2 in more detail. There is also the tendency to in-
spect not only the IP header and information about servers for target
decision, but instead the request itself is analyzed and is forwarded ac-
cording to request patterns.

While IP load balancers could be utilized in WAN situations where the
servers are remotely located, in practice they are placed directly beside
the server farm. Otherwise, we would introduce latency and that would
not square with typical performance demands.

Software-Based Reverse Proxy Solutions

It is also possible to take the incoming request on an application level
and resend it to an actual server, or rewrite it. You might read that this is
most often used for HTTP requests, but all other application gateways can
be utilized as well. In fact, many directory services provide such reverse
proxy functionality as well, e.g., DNS or LDAP servers:

Transparent proxying just forwards the request, the server sees the
client’s IP address and reacts to the original request, e.g., the original
URL. Maybe the reverse proxy checks for request validity first.

Semitransparent proxying rewrites the request and forwards it after-
wards. For example, it might substitute the host name in a URL for
the server’s real name. The server sees the changed URL; it is a mat-
ter of application protocol and implementation if that is revealed to
the client. Owing to lots of application problems with this form of
rewriting, it is seldom used; most often only as a stopgap to support
legacy applications.

Visible proxying may be used in protocols that support redirection.
Then a redirect is sent to the client with the real server’s host name
or address in it.

This load-balancing approach is either silently implemented, as in
DNS or LDAP servers, where it does not get much attention, or it is avail-
able as a product add-on, most prominently in the Apache Web server
with the mod_backhand, mod_proxy, and mod_rewrite modules.

6.2.2 Target Selection for Load Balancing

Several times we have mentioned that selection of the target system, the
server that actually handles the request, is crucial for good load balanc-
ing. Target selection is independent of the approach that is used for load
balancing; all the following methods and algorithms can be used in DNS-
based balancers, IP load balancers, and reverse proxies:
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Random: A target system is randomly selected. No attention is paid
to other parameters, load is distributed but not balanced. Of course,
the distribution characteristics are dependent on the random number
generator chosen.
All servers should have the same capacity and all requests should
need the same resources. In practice, this algorithm has the same
effect as round robin, is harder to implement properly, and is therefore
seldom used.

Round robin: Target systems are selected in turn, starting with the
first again when the last has been used. Thus, the incoming re-
quests are evenly distributed across the available servers. This load-
balancing method is mainly for load distribution and does not con-
sider balanced resource utilization.
As with random selection, all servers should have the same capacity
and all requests should need the same resources. If that is not the
case, use of round robin can cause a less powerful server to be over-
whelmed by requests while another one still has resources left. But if
all servers are the same, or if all servers are simply powerful enough,
round robin is a simple, effective method of load distribution.

Weighted round robin: In a configuration, the capacities of all servers
are defined. For example, one server is taken as a baseline and given
the number 1 (or 100, if integers are used). The other servers are
judged in relation to that reference server and are categorized with
relative “powerfulness.” That gives a weight for a server that can be
used to select the frequency of request forwarding statistically.
This approach is an easy way if the capacity of each server is dif-
ferent but known and each request needs similar resources. In that
situation, it remains a simple, effective method without the need to
check for other parameters.

Fastest: Pass the request to the available server that responds the
fastest, e.g., to a ping.

Least connections: For each server, a list of active connections exists.
A request is forwarded to the server with the fewest active connec-
tions.
This can be used when requests pour in faster than the servers can
handle them. It is an easily implemented method for basic load bal-
ancing.

Weighted least connection: As in the weighted round-robin method,
the server’s capacity is stored in the configuration. The weight given
by that capacity configuration is combined with the least connections
method to determine the target system.
In general, this is a very good method for low balancing, as it takes
into account both the server’s capacity and its current state, as signi-
fied by the active connections. Its main problem is the capacity con-
figuration, which needs experience on the part of the administrator.
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Adaptive balancing: Server load (fetched by Simple Network Manage-
ment Protocol, SNMP), number of active connections, and request du-
ration are input for an adaptive logic that computes actual server us-
age and optimizes resource usage for each server.
In newer systems, this might even use heuristics to guess the effort
needed for a new request. For example, a weight that is computed
from past requests is associated with each URL and server. New re-
quests to the same URL are assumed to have similar characteristics.
Further heuristics try to determine what is static content and what
is dynamic content, as these use different server resources. Such ad-
vanced heuristics are still a realm of research though.

Interestingly, in practice it does not matter too much which server se-
lection method you use. Most request loads are evenly distributed, and
simple algorithms like round robin or least connections already result in
great advantages. Special algorithms come into play in high-end environ-
ments with a very great number of requests that must be handled.

6.3 Cluster and Server Consolidation

In current IT environments, we have two contrary developments:

1. High availability is being demanded more and more for IT services,
as those services get to be more essential for business services.

2. Cost reduction and management improvements demand consolida-
tion of IT services fewer and fewer systems.

These developments are contradictory, since we need redundancy and ser-
vice separation for high availability: important resources must be avail-
able twice or even more often, and services should not interact with each
other.

6.3.1 Virtualization and Moore’s Law

Owing to rapid development in hardware capacity, we cannot afford to
deploy high-end server systems for each IT service. The new systems are
simply too powerful (and too expensive in relation to used resources) and
must be utilized for several services at the same time.

This process will even accelerate over time, according to Moore’s Law.
We will get ever more powerful hardware, while our software and man-
agement technology struggles to keep them deployed and used in a sensi-
ble way.

One important development is that the systems are now so powerful
that we can start to utilize more virtualization techniques on a regular
basis, to increase service separation while running several services on
the same host at the same time.
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It should be expected that future cluster software will incorporate vir-
tualization strategies even further and will thus support better utiliza-
tion of available hardware resources and keep applications highly avail-
able at the same time.

But let us have a deeper look at the most important virtualization
technique in that context, host virtualization.

6.3.2 Host Virtualization

Providing complete virtual computer systems has been possible for a very
long time. In fact, the term “time sharing” was originally used for this,
and only later got a synonym for multitasking. Here, we can preselect the
system configuration that an application runs on; including CPU count
and often speed, memory, storage, and interfaces. At the same time, the
application believes it has the system alone for itself, while the powerful
hardware of today can easily support many virtual hosts running at the
same time.

Virtual hosts are also used for stabilization and to reduce inferences
of services on one host. They are an interesting method that helps enor-
mously in disaster recovery. One can keep several disabled virtual hosts
on a backup system that are enabled in case of disasters. If one succeeds
in proper synchronization of the primary and the backup virtual host,
switchover to the backup system will go very smoothly:

Static resource allocation is available from several vendors; the avail-
able hardware is statically separated into several subsystems and
each virtual host runs on one of these subsystems. This type of vir-
tual host is slowly diminishing, as it is far too inflexible. It can be
used to consolidate several backup systems on one physical host, but
when one backup system is activated, the hardware resources that are
reserved for other systems cannot be reused. Therefore it is mainly
a management advantage and also reduces operational computing
center costs, but is not a functional enhancement compared with mul-
tiple smaller backup systems.

Dynamic resource allocation is slowly making inroads in the Unix
and Windows areas. It supports definition of virtual hosts by means
of system resources that might even be changed at one’s whim. The
virtual hosts share the hardware, but have their own file systems,
network interfaces, etc. Often the CPU usage can be controlled as
well, or memory restrictions can be changed, to avoid one virtual host
hogging all computing resources. This is by no means easy and re-
quires support from the underlying operating system. (For example,
the operating systems must handle reduction of available memory for
virtual hosts.)

Virtual machines have been available in the mainframe world for de-
cades, and are now also in widespread deployment for C/S systems.
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Each virtual host runs its own operating system, and has its own vir-
tual CPU, disk, memory, network, interfaces, etc. No system resources
are used as shared resources, and actual dispatch to the real hard-
ware is done by a virtualization layer, the virtual machine monitor.

We distinguish between host-based virtual machines and native vir-
tual machines:

• In host-based virtual machines, the virtual machine monitor (provid-
ing the environment for the “guest system”) runs on top of an already
installed operating system (the “host system”) and uses the host sys-
tem for hardware access and resource management. This has the ad-
vantage of broad hardware support, as generic operating systems that
are in wide use have typically lots of hardware drivers. As a disadvan-
tage, it adds another level that bites into performance.

• In native virtual machines, a virtual machine monitor directly runs on
the bare hardware and has all necessary hardware drivers as well. For
the guest systems, no differences from host-based virtual machines
are visible. Native virtual machines typically have more restricted
hardware support, but are faster than host-based ones.

Full virtual machines for Intel x86 (IA32) hardware are notoriously
difficult to realize. Therefore the relevant products are quite recent and
have appeared only in the last few years. Other hardware architectures,
e.g., /360, SPARC, or PowerPC, make realization of virtual machine mon-
itors much easier. New 64-bit architectures from AMD and Intel pick up
that trend and provide similar methods.

� Products

VMware, in 2004 acquired by EMC, has both host-based and native vir-
tual machine offerings in their portfolio. It targets the IA32 and 64-bit
AMD and Intel (x64) markets. VMware Workstation and GSX Server both
use Linux and Windows as the host system; ESX Server is a Linux-based
native implementation. It delivers abstract hardware where few capabil-
ities of the original hardware shine through and support all major Intel
operating systems as guest systems.

ESX Server has limited hardware support, but has the best perfor-
mance. To support high-availability and disaster-recovery requirements,
it has the ability to move virtual hosts from one host system to another,
while the guest systems are running, without any disruption. This clus-
tering capability also provides automatic migration in the case of hard-
ware errors; user sessions will be aborted in that case.

GSX Server is meant to be used in a client/sever environment, where
thin clients access guest systems that are hosted on big servers. Of course,
it can also be used to implement several servers on a physical system
and has management capabilities for that task. VMware Workstation is
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meant for standalone deployments and does not feature the elaborate
management capabilities; therefore, it is not appropriate for disaster-
recovery deployments.

VMware has stable and very good products. It officially supports a
wide variety of guest operating systems, from Windows to Linux to sev-
eral Unix variants. For IA32 and x64 systems, it is the best in the market.

Microsoft has two host-based virtual machine offerings, Virtual PC
and Virtual Server. Both run on IA32 and x64 hardware. Virtual PC tar-
gets the desktop market and is not appropriate for high-availability or
disaster-recovery objectives.

Virtual Server is a mature product that should further server consol-
idation and migration of legacy deployments. Only Windows server oper-
ating systems are supported as guest systems. It has excellent integration
into Microsoft’s Windows administration framework. It comes with clus-
tering capability that enables automatic virtual system migration in the
case of host hardware errors, aborting user sessions in that case.

IBM has virtual machine products for its pSeries (logical partitioning,
LPAR) and for its zSeries (z/VM). Both products realize virtual machines;
they run their own operating system images. LPARs are host-based and
use AIX as the host system; z/VM is a native virtual machine. As VMware,
they support different guest systems at the same time.

z/VM and its predecessor VM/ESA are the most deployed virtual ma-
chine products in mission-critical environments: it does not get more solid
than this old mainframe technology. LPARs represent an effort to bring
mainframe capabilities to IBM’s Unix servers. Up to AIX 5.1, they sup-
ported only static partitioning; since AIX 5.2 dynamic resource allocation
has also been available.

Sun introduced hardware partitions for their servers, allowing these
servers to be split into smaller “domains” with static resource allocation.
Each domain is bound to specific hardware components; hardware cannot
be shared as well. Every domain runs its own instance of Solaris. Later
on, Dynamic Systems Domains allowed hardware resources to be moved
from one domain to another while the system is online.

An alternative for this native virtual machine technology is Solaris
Containers in Solaris 10. Containers are execution environments with
limits on resource consumption; they share their operating system im-
age. Limits can be placed on CPU usage, memory, disk space, user logins,
connection time, etc. An important part of Containers is Zones, taking
up the FreeBSD jail concept: each Zone is an isolated execution environ-
ment. Even though they share the operating system, for each application
it seems as if it is running on its own own machine. One could describe
Zones as chroot on steroids.

Containers are very lightweight and are primarily meant to separate
physical hardware and logical server management. For example, network
interfaces and IP numbers are assigned to Containers and cannot be
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changed within. As such, they make good tools for disaster recovery as
well, since we want to manage several logical servers on our physical
backup system.

Hewlett-Packard provides both hardware-based partitioning (nPar)
and software-based virtual partitions (vPar) for its HP-UX operating sys-
tem. They are host-based virtual machines which run their own oper-
ating system image. nPar resource assignments are static, like Solaris
Domains. vPars can be created dynamically, and one can specify the set
of resources that are assigned. Within a vPar, one can create a resource
partition that allows lightweight resource control, similar to Solaris Con-
tainers and Zones.
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Databases and Middleware

Complex IT services are usually not implemented by single programs.
They have to fulfill many requirements and do so by means of software
components that work together. Some of these components are written
specifically for that service: these are those that we call applications in
the strict sense. Others realize functionality that can be reused in many
different applications, and this chapter is about the latter class of soft-
ware components. Database and application servers are the most promi-
nent examples; more will be presented in Sect. 7.1 on p. 191.

They are called middleware because they sit “between” the operating
system and the application software. There, they either provide abstrac-
tions or adaptations of operating system functionality. (That is the origin
of the term, back in 1968 at the famous NATO Software Engineering Con-
ference). Or they provide generic functionality that is missing in operat-
ing systems but that is needed in today’s enterprise-class applications.

It is a bit tricky to give an exact definition for middleware, as that term
has become kind of a buzzword over the last few years. For the purpose of
this book,

Middleware is the layer of software components between
the operating system and the application that is
independent of a specific application but needs

application-specific configuration.

This rough definition captures the differences between middleware and
other system stack levels. Middleware:

• Delivers functionality that is not part of the operating system
• Delivers independent services that can be used for many applications
• Must be adapted to each application and does not exist independently

as infrastructure does.

These differences are not always technical.
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It is hard to define what an operating system is and especially what
functionality is considered part of an operating system. While that is
clear for the essential parts (management of hardware resources and pro-
cesses), functional outskirts like storage volume management were only
recently incorporated into many operating systems. As another example,
job management is available only in very rudimentary forms in most op-
erating systems today. Therefore, the expression “functionality that is not
part of the operating system” is not an inherent definition that will not
change over time; it depends on the specific operating system (sometimes
even on its specific version) for comparison.

Most prominently, file server software is sometimes part of an operat-
ing system, sometimes it is not: Common Internet File System (CIFS) and
Network File System (NFS) are two protocols for remote file systems, and
are either available on Windows or on Unix, but seldom on both, though
this has changed with the advent of Linux. But in the end, this is more a
market-oriented consideration than a technical one. Since nowadays ev-
ery operating system comes with some form of network file serving, we do
not consider file servers to qualify as middleware components.

At the same time, several services (in particular Web servers, some-
times even databases like MySQL) are starting to be part of many op-
erating system default installations. Those servers have been considered
separate products by many people, and still are. But this may change in
the future when their availability becomes ubiquitous.

In the end, widely used middleware functionality tends to become a
commodity and tends to get integrated into operating system installa-
tions. But application areas that are a niche or that cater to high-end
functionality will always prevail and will be serviced by separate middle-
ware products.

The differences between middleware and application components are
sometimes vague as well. There are some products that are labeled as
middleware and that are currently used by only one application. Yet, they
are designed to be usable elsewhere again and they deliver functionality
that is independent of that application. That alone is enough to qualify
such components as middleware.

In a similar vein, the distinction from infrastructure is blurry. Net-
work equipment (switches and routers) are usually not specifically con-
figured for applications and thus clearly belong to the realm of infrastruc-
ture. Domain Name Service (DNS) servers are already in the gray zone
since they will often be configured to provide specific service names. Nev-
ertheless such name/address mapping is usually not seen as something
application-specific and is therefore classified as infrastructure too. With
email gateways, it is already becoming difficult – if receipt and sending
of emails is an essential part of an application, the email server would be
clearly classified as middleware for that application, whereas some out-
bound administrative email now and then is seen as normal application-
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independent service usage, and would leave the email server in the infra-
structure layer.

While there is no overall agreement on the definition of the term mid-
dleware, one thing is sure: from the viewpoint of high-availability system
design, middleware components are almost always a good choice. They
provide application-independent behavior and one can leverage invest-
ments into high-availability designs for several IT systems at once. In
effect, middleware allows us to bring standardized high-availability de-
sign parts into applications.

7.1 Middleware Categories

There are some software categories for which it is generally accepted that
they can be named “middleware.” Most of them are described in this chap-
ter later in more detail.

Database servers are the prototypical and one of the oldest examples
for middleware software. Most relevant for enterprise-class software
are relational databases that are accessed by SQL.
Configuration for the application consists of creating databases with
appropriate schemas, i.e., table structures, where data can be stored
and retrieved.
High availability and disaster recovery for database servers is pre-
sented in Sect. 7.2.

Web servers are front-end systems that are used to realize the HTML
user interface for an application, or for delivery of unstructured data
in the form of documents or files. They are accessed via the HTTP.
Configuration for the application consists of establishing a URL map-
ping to the user interface or to data delivery mechanisms.
High availability for Web servers is presented in Sect. 7.3.

Application servers are components that provide ready-to-use compo-
nents to realize the business logic of an application. In addition, they
are a framework for the application’s deployment – the application is
not a program anymore, but runs within the application server.
In fact, as a runtime environment, current application servers intro-
duce functionality that was previously provided by traditional serv-
ers, e.g., messaging or transaction management. Sometimes, that
functionality is realized by wrappers that access traditional servers.
Configuration for the application consists of adding the application
components and publishing the application-specific interfaces.
High availability for application servers is presented in Sect. 7.4.

Messaging servers take structured or unstructured messages from ap-
plication components and assert that these messages are delivered to
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the receiving component, which may run on another computer sys-
tem. They solve the application-independent problem that some data
has been computed and must not get lost but where the application
itself does not want to implement a reliable and fault-tolerant com-
munication protocol and infrastructure.
Configuration for the application consists of definition of message for-
mats and of communication end points that can send or receive mes-
sages.
High availability for messaging servers is presented in Sect. 7.5.

Transaction managers, also called transaction monitors, supply trans-
actional behavior (that a series of actions is either completely done
or not done at all) for applications. Often they control the access to
database servers or to legacy mainframe systems and supply restart
behavior for clients, independently of the application.
As separate middleware components, transaction monitors are like
application servers: they deliver a runtime environment for applica-
tion components that are not standalone programs anymore, but are
loaded into the transaction monitor. Owing to that similar structure,
transaction monitors cannot be used together with application serv-
ers. Instead, application servers often provide transaction manage-
ment functionality, as we will see later.
Configuration for the application consists of definition of transactions
and loading the application components into the runtime environ-
ment.

Some services are considered as infrastructure services in this book,
even though some other publications consider them as middleware, but
since their application-specific configuration is usually minimal, they do
not fall under the previous definition:

• Identity management servers
• Directory servers (e.g., DNS, Lightweight Directory Access Protocol,

LDAP, or Active Directory)
• Email servers
• License servers

The rest of this chapter will present most of the middleware categories
already mentioned in more detail. In each section, we will present the
category’s basic functionality and approaches for high availability that
may be typically used with such a middleware product. These approaches
include product-specific clustering, data replication, and sometimes even
session state replication.
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7.2 Database Servers

Database Servers are the most important example of middleware compo-
nents. Almost any enterprise-class software system utilizes them in some
way. They are used to:

• Store most data that is essential for a business
• Query and retrieve that data
• Provide adequate performance in accessing big amounts of data
• Allow access by several users and several tasks at the same time
• Provide a robust data store
• Supply a consistent view of the data
• Help ensure consistency of stored data

Nowadays, the term database servers is more or less synonymous with
relational databases.1 In these databases:

• Data is stored in database tables.
• Table columns are typed, i.e., each entry in a table column has the

same data type as other entries in the same column.
• A row in a table is also called a record.
• Several structural views can be defined for tables, e.g., tables can be

combined or some columns or rows can be filtered out in a view.
• Definition of table structure, as well as update and retrieval of data,

is done by SQL.
• Encapsulation of user actions is provided in the form of transactions.
• Users are always provided with a consistent view of the data.
• Consistency constraints of data can be declared and are checked by

the database server automatically.
• After system crashes, a database recovers automatically and restores

the data to a consistent state.

That data is stored in tables with typed columns is the reason why re-
lational databases are said to hold structured data. There are types that
just say “text” or “bytes” though. In such columns, arbitrary unstructured
data can be stored, e.g., whole documents or images. For text columns,
some database servers even have special operations, e.g., a full text re-
trieval mechanism.

When the ability to store unstructured data meets the desire to add
meta-information to that data, paired with the robustness, performance,
and query possibilities of a database server, then databases are used for
storage of unstructured data as well. This may be email, documents and
images of a content management system, CAD drawings of an engineer-
ing system, or arbitrary other data. In fact, the wide dissemination of
1 The theoretical definition of relational databases is different, but that is not

relevant here as we want to capture the functionality of existing software prod-
ucts.
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Fig. 7.1. Database server and clients. RDBMS relational database management
system

open-source database products made it possible to use database servers
for many more applications than the budget allowed before. (Of course,
database vendors were always of the opinion that they supplied the best
data store and that all information should be placed in their products.)

All database servers employ heavy caching, to provide needed perfor-
mance. Besides the persistent storage for the actual table data, they also
need persistent storage for auxiliary data; Fig. 7.1 illustrates that, and
some terms in that figure are introduced in the next sections.

But there are many more database server categories than the rela-
tional ones. Hierarchical and network databases were prominent once
and are still in use in legacy applications. Object-oriented databases were
said to be the future, but never made it into the mainstream of applica-
tions. Also, some vendors were very disappointed that their special XML
database servers did not receive enthusiastic and broad usage. Instead,
some of the functionality of object-oriented and XML database servers
was incorporated into the current crop of relational databases and is now
state of the art there.

In this book, nonrelational databases are ignored; they are not rel-
evant for most enterprise-class applications that are deployed today. In
fact, the basic approach might be the same for them, but this is highly
dependent on the respective product and is therefore beyond the scope of
this book.
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Relational Database Servers

Relational database servers consist of two parts:

1. The relational database management system (RDBMS) is the
software that manages the databases. It has the storage functionality
to decide how and where data is stored, and can add, delete, mod-
ify, sort, and display data. In addition, the query functionality allows
searches for specific information in an abstract way, utilizing SQL.
Many RDBMS products allow us to declare code that may be run on
the server: this is called stored procedures.

2. The database instances are named collections of data sets. Each
data set consists of tables with defined structure; the Data Defini-
tion Language (DDL) part of SQL is used to define that structure,
also called the database schema. Part of that DDL is the definition
of integrity constraints that the RDBMS shall ensure are true. Such
constraints demand the existence of records that are referred to, or
restrict the range of values a table column can hold.
The table data is stored either in files or in raw disk partitions; some
RDBMS products allow elaborate control of data placement to im-
prove performance.

The RDBMS component is the same for all applications. Some of them
define their own database instances, some share them. In particular, in
financial applications, it is considered good style to control the database
schema and make that independent of a specific application – after all, ap-
plications change often, but your account data should stay the same. On
the other hand, many modern development environments take schema
definition into their own hands and allege that the programmer has only
to tag persistence of data. Here, the programmer or user does not touch
SQL anymore.

That a user uses SQL to access a database himself or herself is not too
uncommon. SQL was touted from the start as a declarative data access
language that can be used by business staff as well, and the success of
products like Business Object’s Crystal Reports shows that such usage is,
in fact, possible.

ACID Properties

Almost all relational databases support transactions as the basic unit
of logical operation on data. A transaction is a series of low-level opera-
tions that are either all successful or not done at all. For example, a fund
transfer within a bank has to withdraw (debit) money from one account
and credit it to another account. Of course, the whole transaction should
not be aborted while in progress, otherwise the money will be lost: either
both operations are successful, or both must not be done.
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These kinds of requirements led to the formulation of the ACID prop-
erties: Atomicity, Consistency, Isolation, and Durability. It is the hall-
mark of good database products to fulfill them:

Atomicity means that a transaction is either done completely or not at
all. In our example, funds are either both withdrawn and credited,
or account balances are left as they are. Completing a transaction is
often called a commit; aborting it unsuccessfully is called a rollback.

Consistency means that the database instance does not violate any in-
tegrity constraints when a transaction begins and when it ends. If
a constraint would be violated, the transaction is rolled back to the
consistent start state.

Isolation means that every transaction behaves as if it accesses the
database alone. During a transaction, intermediate or inconsistent
states may be created. For example, the funds have already been with-
drawn, but not yet credited. This intermediate state is not seen by any
other transaction; they will always see the data in the state before or
after the changing transaction.

Durability means that successful transaction results are not lost, but
remain. If the user is told that the fund transfer has been successful,
that transfer is not lost by later system failures.

It is clear that proper ACID support is both an advantage and a chal-
lenge for highly available database server installations. Atomicity and
consistency properties allow us to handle system failures gracefully and
maybe restart the user’s action on a backup system. On the other hand,
durability is a requirement that must be assured in the high-availability
environment as well.

For disaster recovery, the durability requirement is often weakened.
This is the realm of the recovery point objective that describes how much
data may be lost in the case of a major outage.

Redo and Undo Logs

Atomicity and durability are realized by write-ahead logs, in combination
with other methods that are not relevant for high availability or disaster
recovery. In such logs, every data change is recorded with both the value
before and the value after. The value before is the undo information that
is used for transaction rollback. The value after is the redo information
that is used for crash recovery. Transaction start and end (commit or roll-
back) information is also saved in the log. The write-ahead log is written
synchronously (unbuffered) to disk, while the actual data storage might
use buffered writes for performance improvements.

Example 1 (Write-ahead log function principle). Let us have a look
at Fig. 7.2 on the next page. This is the write-ahead log of four trans-
actions on a few accounts with fund transfers of $10, $20, $30, and $40,
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Fig. 7.2. Example of a write-ahead log

respectively. Each transaction Ti has four operations: di for debit and ci
for credit; Si and Ci are start and commit.

Let us have a more detailed look at each of those operations, and write
up all operations as they appear per transaction, with account number,
before-value, and after-value information for debit and credit operations,
as they are recorded in the write-ahead log. Please note, in our example
a transaction only accesses accounts that are not in use by any other
transaction; this effectively realizes the Isolation property.

T1 = S1,d1(0815,90,80), c1(1908,10,20),C1

T2 = S2,d2(4711,75,55), c2(6501,30,50),C2

T3 = S3,d3(4711,55,25), c3(1908,20,50),C3

T4 = S4,d4(0815,80,40), c4(2401,15,55),C4

To see the functionality of the write-ahead log, we need a crash scenario.
Figure 7.2 sports such a crash point. Since the write-ahead log is written
synchronously it will be available without problems at database restart
(i.e., the content of the write-ahead log is the entries to the left of the
crash line.)

We read the log from the back:

• Since T4 has no commit entry, we need to undo the deposit if necessary,
i.e., account 0815 is set to $80 if it does not have that value.

• Since T3 has no commit entry, we need to undo both the credit and the
deposit: account 1908 is set to $20 and account 4711 is set to $55. The
crash recovery is not able to know that the transaction was actually
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complete and just the commit tag C3 is missing. There could have been
more operations, so the transaction must be rolled back.

• Since T2 has a commit entry, we need to ensure that credit and debit
have happened: account 6501 is set to $50 and account 4711 is set
to $55. (Of course, the latter was set already, so we do not actually
need to do that.)

• Since T1 has a commit entry, we need to ensure that credit and debit
have happened: account 1908 is set to $20 and account 0815 is set
to $80. As for T2, there is an obvious possibility for optimization of
this “redo action.”

To be honest, actual implementations do not work in that simplistic
way for performance reasons. But the basic principles still apply.

That methodology has several consequences:

• The actual data storage can be aggressively buffered, as long as the log
information is written synchronously to disk without any buffering.
In our example, we mentioned that “a value must be ensured.” That
is because we do not know the actual value in the data store owing
to buffering. But that is not a problem – in the case of a failure, all
changes can be reconstructed from the log and do not need to be in
persistent storage. This raises database performance by magnitudes.

• To summarize: if we have to recover from a database crash, we can
take the data store and
1. Undo all undo information of uncommitted transactions
2. Reapply all redo information of committed transactions
That way we get a data store with all committed transactions, atom-
icity and durability are asserted.

• Redo log records can be used for synchronous or asynchronous replica-
tion to another database. They are constructed at commit time as the
sequence of redo information:
– For synchronous replication, they are transmitted to another data-

base installation and are committed there before they are commit-
ted at the primary database.

– For asynchronous replication, they are transmitted to another
database installation and are committed independently of the main
database’s commit.

Write-ahead logs are the traditional and easiest way to implement
atomicity and durability. There exist also other means for realization,
e.g., shadow pages, that sometimes perform better or have other advan-
tages. All of them boil down to the principle of keeping data before and
after changes. Therefore every such technology can be accommodated and
adapted to the principal usage for high availability and disaster recovery
that is outlined next.
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7.2.1 High-Availability Options for Database Servers

For all database server products, it is possible to utilize failover clusters
on the operating-system level, as explained in Sect. 6.1 on p. 151. But
these cluster systems are sometimes not integrated sufficiently with the
database server software, so we need to be careful.

Care must be taken to ensure that any change from the database soft-
ware is really on disk, otherwise there would be no durability anymore.
This means that all log records must be written synchronously to disk. In
theory, this is not a problem, as the RDBMS opens the files with the syn-
chronous output (O_SYNC) flag. In practice, there are quite a few pitfalls.
Database files may be on network-attached storage (NAS) or on SANs,
where caching might have been turned on and the O_SYNC flag is ignored.
Of course, that is not a default configuration, but an overeager engineer
might have turned that on to improve performance for other applications.

At the same time, at many installations performance is improved
when the file system is mounted synchronously. While this does not
change any access semantics (the O_SYNC flag alone is sufficient), it of-
ten discards usage of file system write buffers in the operating system
and thus saves two in-memory copies of any written data.

One needs to test such installations carefully, in particular for the
restart time after crashes. Some database servers run full data integrity
checks after any crash, and that might take too long for a failover cluster,
leading to another switch while the service start has not even finished,
i.e., it is mandatory that the tests include the case of an inconsistent data-
base to be able to assert appropriate behavior.

Typical restart times after a crash (when recovery is needed) are
1–30 min, maybe even more. This depends on database size and change
rate; the times differ for each installation and must be determined in re-
alistic tests. The recovery times must be taken into account both on the
business level, for service level agreement (SLA) definitions, and on the
technical level, when service checks are implemented and failover ping-
pong shall be avoided.

However, a properly configured failover cluster for database servers
has very good reliability and is a tried-and-tested solution for most cases.

Database Clusters with Shared Storage

For those cases where restart problems may happen, where switch times
are not allowed, or where one database server is not fast enough, high-
end databases provide cluster options. There, several RDBMS installa-
tions work together to provide a consistent and coherent view of one sin-
gle database for any client. Those RDBMS installations work on the same
database instance, i.e., they share the persistent data storage. They com-
municate commits instantly to all cluster nodes, to ensure that all cached
data at all cluster nodes is current.
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Fig. 7.3. Database clusters

Such a database cluster needs a shared storage subsystem, e.g., a SAN,
that supports concurrent writes from multiple associated computers. Of
course, that storage subsystem is a part of the system that exposes a risk
– as in failover clusters, it contains single points of failure. In addition,
the actual information is stored only once in the whole cluster; if that
storage fails owing to a software error, the whole cluster will be nonfunc-
tional, i.e., database clusters do not protect against errors in the RDBMS.

Figure 7.3 illustrates the working principle of database clusters.
Like failover clusters, node failures lead to session aborts. Data from

committed transactions are not lost, but all open transactions are rolled
back. The user loses all the transient state that she or he has typed in or
gathered somewhere else, and the work has to be redone.

Compared with failover clusters, database clusters have a big advan-
tage though: When a node fails, there are no failover times. Since the
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other cluster nodes are already up and running, there is no restart time
and the cluster will be able to answer new requests immediately.

But that “no-restart-needed” capability comes with a price. Since sev-
eral RDBMS installations are active at the same time, they will take re-
quests on different IP addresses. Each address provides the same func-
tionality; the database client (e.g., the application server) has to select
one. That connection will not succeed if that cluster node is down: the
client must know that it has to retry the connection with a different IP
address. Similarly, when a connection is reset, the client has to reconnect
to a different address.

This functionality is provided by database client libraries and does
not need to be programmed anew for each database. Nevertheless, it in-
troduces the dependency that the client programs use the right version of
those libraries.

If that is not the case, these database clusters must be combined
with load-balancing solutions. Load-balancing clusters were introduced
in Sect. 6.2 on p. 176 and can cope with nonreachability of one cluster
node. But this means that a database cluster cannot be operated on its
own, but needs additional cluster support on the operating system level.

Stable and mature database clusters are a rather new development.
Such products have not been on the market long, and experience in ad-
ministration and operation of such clusters is still not widespread. IT
staff often elect to go with the known failover cluster realization, instead
of using the “new” technology of database clusters. This is particularly
true when the switch-and-restart delay is not a problem for the requested
SLAs, and where no advantage is seen from database clusters. While this
is understandable, we should expect the usage of database clusters to
broaden in the next few years, as many companies gain familiarity in
pilot projects.

Multi-Master Database Clusters

Database clusters with shared storage improve on failover clusters by
providing enhanced performance and no switch times. They still have the
problem that the storage subsystem might have a single point of failure.
That storage must support parallel-write from several cluster nodes to
the same database files, and there can very well be errors in that code
that render the database nonfunctional.

If overall write performance is not a problem per se, multi-master
database clusters are a possible solution. In such installations, each clus-
ter node has its own persistent data storage. Any updates are sent to a
replicator component which is responsible for replicating it immediately
to all cluster nodes, i.e., the node that receives a data update request does
not do the update itself – all updates are always done by the replicator.
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With that method, the replicator can also handle record and table locking,
otherwise the isolation property cannot be ensured for such clusters.

Since many nodes in the cluster can listen to requests, we have the
problem with multiple IP addresses that we already had for database
clusters with shared storage. In this case also, either the client must
be able to handle it or such a solution must be combined with a load-
balancing cluster.

Figure 7.4 illustrates the working principle of multi-master database
clusters.

The gain achieved with such a cluster architecture is that data is
stored multiple times at several independent hosts. This increased re-
dundancy has the associated disadvantage that we have a management
component, the replicator, that is most probably our new single point of
failure. As so often, the redundancy management components prove that
they are critical in high-availability designs.
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Overall, it is unclear if we have to choose this design pattern or a data-
base cluster with shared storage. It depends a lot on experience: shared
storage might be a more mature technology than multi-master replica-
tors, as it is used in other contexts as well; on the other hand, the de-
sign decision might be made obsolete be the choice of database products
– not all products have all cluster options and we must face the fact that
high-availability and disaster-recovery options are typically not the cru-
cial factors for product selection.

Master-Slave Database Clusters

The last option for database clusters is a master-slave cluster. In this con-
figuration, we have one node that can do write operations (the master
node), and several nodes that handle read queries (the slave nodes).

This database cluster category is of interest when the application does
lots of read operations and few write operations. If the write operations
are done by special application parts that can be configured to use specific
database connections, this cluster category is a possible design choice.

Figure 7.5 illustrates the working principle of master-slave database
clusters.

Replication of data from the master to its slaves is usually not done for
each write operation, but at commit time. Then all redo information can
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be transfered to the slaves, which can reapply it, just as they would do
during crash recovery. Therefore this replication technology is sometimes
called redo log shipping.

Master-slave replication can be done:

• Asynchronously: the master does not wait for the commits at the
slaves.

• Synchronously: the commit at the master is only done when all com-
mits at all slaves have been successfully acknowledged.

There is no predefined answer for which mode is better, asynchronous
or synchronous redo log shipping. Synchronous replication makes sure
that all nodes have exactly the same state. But this is bought with a
high performance penalty and is often not needed. For many applica-
tions, it does not matter if a query result is a bit out of date: for them
asynchronous replication is sufficient.

Example 2 (World-wide company contact information). Many com-
panies provide Internet-based information systems that can be used to
look up contacts for that company. To avoid connectivity, latency, and
availability problems, the data is made available in databases at several
locations around the world.

Master-slave database clusters in WANs are the obvious design choice
for such a requirement. Contact information is updated and maintained
in a central global database and is replicated at need to the slave servers
all over the world. It does not matter if a client gets the updated informa-
tions a few minutes later.

As so often, this obvious solution has its flaws. One might not want
a central global database since one wants decentralized maintenance of
contact data. Then such a master-slave cluster is not appropriate and de-
centralized directory servers would probably be used. But if contact infor-
mation is maintained in a relational database, the master-slave servers
are an excellent choice for such situations.

To summarize, master-slave database clusters can be utilized in special
environments where one has control over the application’s write and read
operation and where many more reads will happen than writes. In addi-
tion, they have a prominent place in disaster recovery, as outlined in the
next section.

7.2.2 Disaster Recovery for Databases

Most disaster-recovery methods are presented in Chap. 10, but databases
store the mission-critical data of your company and are therefore so im-
portant that a summary is provided here as well.

Often database clusters cannot be operated over several sites without
problems. The network connection is not reliable enough, and network
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latency is a very big problem as replication to the cluster nodes is done
synchronously. The same is true for synchronous mirroring of storage.
Under such circumstances, database clusters or storage mirroring cannot
be employed for many mission-critical situations.

Additionally, database clusters or storage clusters over WANs do not
protect against user, administration, or software errors. But disaster re-
covery should protect against such failures as well.

To achieve the best disaster recovery, asynchronous redo-log shipping
should be utilized, with commits delayed by the recovery point objective
(RPO). That way, the redo logs can be sanitized manually in the case of
human or software errors before they are applied to the data store.

This establishes a standby database on the disaster-recovery system.
Management of standby databases with replication by redo-log shipping
does not need to be implemented by the project team, there are ready-
made products available for that, e.g., Oracle Data Guard.

7.3 Web Servers

Web servers are an essential component for many current applications.
Be it that one has to interface with customers or business partners on the
Internet, or be it that one wants to reduce the overhead of client man-
agement on desktops, HTML-based user interfaces are en vogue and are
available for many applications. Even applications like SAP, where power
users will always have their specialized client, or Exchange, where Out-
look is usually used as the client, have their Web interface for users who
are not at their own configured desktop or who have few actions to per-
form.

There is one preferred method to achieve high availability for Web
servers: use a load-balancing cluster, as explained in Sect. 6.2 on p. 176.
The preferred method is the usage of a redundant load-balancing appli-
ance; if you need a low-cost solution and have the necessary skills in-
house, the Linux Virtual Server Project comes in handy.

But this assumes that the state of your application is not kept on your
Web server. If you happen to run an old-fashioned Web application that
keeps its data in files on the Web server, you have two choices.

1. If you have a redundant file server, place the files with the state on
that server. When you do that, you must make sure that all file access
methods are supported by that server. For example, some combina-
tions of NFS clients and servers do not support all file locking func-
tionality, and that is probably used by the application to coordinate
parallel-write accesses.

2. Migrate the data into a database. For some applications, this is the
best method, but it may mean a substantial investment in the change
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of an application. One needs to consider as well the applicability.
While database bring you enhanced reliability and often also en-
hanced access performance, storing highly structured data, storing
very big data blobs, or unstructured queries over many database fields
are not strengths of database products.
As an example, if we have an application that serves to exchange big
files with business partners over the Internet, it is questionable if one
really wants to store gigabytes of data in one database blob, and if not
file systems are a more adequate storage facility for such data.

3. Use a failover cluster for the Web server. This is the method to choose
if you do not have a file server available, do not need the performance
boost of the load-balancing cluster, and cannot change the application.

Those possibilities not withstanding, we will assume the usage of load
balancers for the rest of this section.

The demanding part in a load-balancing cluster is to assure that all
Web server nodes in that cluster process the requests in the same way.
To do so, they must have the same content and the same Web server
configuration.

� Web Server Content

Web server content usually has static and dynamic parts. Static parts
are often images, style sheets, and generated or cached constant HTML
pages. Dynamic parts are HTML pages that are generated per request.
There is the tendency in Web server content overall that all HTML con-
tent is generated dynamically, to allow sitewide changes in style and
structure. Only for performance reasons are static HTML pages gener-
ated and cached at some place.

This tendency may not be assumed to be true for Web applications
as well. Here, static content may actually be server-side programs that
are executed within the server context or as external programs via the
server’s Common Gateway Interface (CGI). On the other hand, applica-
tions that also utilize application servers often have no content at all, but
only take requests and forward them to the application server. Split mod-
els are possible too. Then, a daemon runs on the Web server and processes
the part of the request that does not need session state or other data, but
utilizes an application server for anything else.

The challenge is now that all Web server cluster nodes must have the
same static content and must access the dynamic content in the same
way. In fact, dynamic content is often the easiest to manage. Each cluster
node has the same installation of the program that accesses the content
and creates dynamically the HTML pages. The content itself is kept in a
database that runs on an external, highly available server. Update of Web
server content now means update of these programs, and this happens
less often than updates of content.
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But what should we do with the static content that has to be on the
servers as well? And the generated pages, and the coordination of this
with the dynamic content in the database? We must not assume that we
are able to handle that coordination manually. Instead we need to utilize
content management systems that do that management for us.

It is not sensible to run a highly available load-balancing cluster
for Web servers without a content management system.

Even if you have some, there might still be problems. For example, for
some content updates, the server processes need to be restarted. Many
content management systems do not support this coordination out of the
box. One is well advised to establish proper automated content update
support for one’s clusters, otherwise one is bound to see problems during
operations.

� Web Server Configuration

It is often neglected that Web server configuration is as important for
request processing as content provisioning. Web servers get URLs in re-
quests and need to map these URLs to actions that deliver the requested
content.

This might be accessing a file; then the URL must be mapped to the
file location. This is trivial for the simplest configuration, when a URL
suffix is simply the relative path of the file. But as often one wants to
keep old URLs valid while the content is at a new position already, then
more and individual mappings must be introduced. These mappings must
be made on all cluster nodes at the same time – and this is not supported
by content management systems.

Similarly, when the URL denotes some external or internal program,
there must be a mapping from that URL to the program to be called. If a
program changes locations or sometimes even its name, we might need to
change the server configuration.

And last, if the URL is to be processed by an external service like an
application server, the proper forwarding of the HTTP request must be
configured.

All this boils down to the fact that manual configuration updates are
too error prone for high availability of Web server clusters. One needs
to deploy Web server configuration updates by automatic means. If the
server configuration is stored in files, one can utilize file replication tech-
nology like rsync. Some Web servers allow their configurations to be
stored in a directory server, which achieves easy configuration of a whole
group of servers at the same time.

� Authenticated Accesses

Many Web applications need to authenticate requests. In the most basic
form, the user is asked to provide a user ID and a password and these are
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used for identification of the user. Other authentication schemes utilize
available Windows credentials or signed public keys.

It does not matter which authentication method is used, but one thing
is common among all of them: in high availability environments, the cre-
dential database must not be stored as a file on the Web server. It is near
to impossible to keep it synchronized over all cluster nodes. Instead, a
directory server must be utilized. Of course, that directory server must
be highly available as well – without that, your Web application will not
run.

It is possible to use an existing directory server that is used for au-
thentication anyhow, like Active Directory. But then you should be aware
that most Web servers do not use encryption, and basic authentication
transfers the password in the clear – suddenly it becomes quite easy
to capture passwords for your normal Windows accounts. Using Secure
Sockets Layer (SSL) encryption for all Web accesses might not be pos-
sible for performance constraints; content-based load balancing does not
work well either. (It is not possible to have one part of the page encrypted
and other parts, e.g., images, unencrypted.) Therefore, the usage of exist-
ing authentication services should be planned with great care and with a
thorough security analysis.

7.4 Application Servers

Many enterprise-class applications need the same basic set of function-
ality. Application servers provide a framework that enables sharing and
(relatively) quick usage of common components.

When one uses an application server, the application is not written as
a program anymore. Instead, one writes classes according to application
programming interfaces (APIs) that are defined as part of the applica-
tion server frameworks. These classes are “plugged into” the application
server and are used when needed – the server will take requests and
schedule them either to the application’s objects or to other internal com-
ponents, as needed.

Owing to that plug-in concept, most application servers support only
applications that are written in one programming language. Microsoft’s
.NET framework is an exception, as it is based on the Common Language
Runtime, which supports several languages.

� Scaling

Quite often, implementing the business logic needs lots of resources. Even
with modern systems, this can lead to overload situations if many re-
quests must be serviced at the same time. It is often not possible to re-
alize that on one machine; then one needs the ability to distribute the
application’s business logic implementation over several systems.
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Good scaling properties mean that an application can also survive un-
expected growth of usage, beyond the original design. Scaling to several
systems demands request scheduling. Some application servers even sup-
ply session state replication.

� Database Access

Applications want to create and access persistent information. Tradition-
ally, that may mean access to records in a relational database. In object-
oriented applications, this may also mean storage and retrieval of persis-
tent objects.

Application servers provide a standardized interface to access rela-
tional databases. In addition, they provide methods to realize object per-
sistency by storing and retrieving object serializations.2

In addition, the database access usually provides connection pooling
to enhance performance of database queries and access.

� Session Management

If a session consists of several requests from a client, the requests either
need to contain the context from the previous requests, or the server must
keep the context. The context is the result of all previous requests, as far
as it is relevant for future requests. If the application allows user-level
undo capabilities, the complete request history must be contained in that
session context.

If the session context is kept on the server, it is often called a session
object.

� Directory Interface

Many application services need access to authentication and identity in-
formation, or to data about groups and roles. Similarly, they need infor-
mation on devices. Most larger companies have such information in di-
rectory servers (NIS, LDAP servers, or Active Directory).

Application servers provide an abstract interface to such directories
that hides access and implementation details.

� Transaction Semantics

The concept of transactions was introduced in Sect. 7.2 on p. 193. They
are as relevant for other application parts – a user action shall either suc-
ceed or fail as a whole. Application servers provide a framework to define
transactions for nondatabase actions as well. (The low-level operations
of these actions need to fulfill some requirements for that; in particular,
they need undo functionality.)

2 An object serialization is the expression of an object state as a text string.
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Transaction modules in application servers take over a role that tra-
ditionally was served by separate middleware products, namely, transac-
tion managers.

� Messaging

Often results of one business process must be reliably transfered to
another component or to another system. Messaging provides this dis-
tributed communication facility. One program component can just submit
a message and rely on its delivery to the recipient. For example, when a
transaction has carried out a fund transfer in a financial application, it
might be necessary to notify some money-laundering check application if
the amount is over a certain limit. This check does not need to be in the
fund transfer application itself; that application can send a message to a
separate component that handles those statutory provisions.

Messaging modules in application servers take over a role that tradi-
tionally was served by separate middleware products, namely, messaging
servers or queue managers, which are described in Sect. 7.5 on p. 213.

� Connectors to Legacy Applications

IT services in companies are often supplied by legacy applications, most
of them on mainframes. On the one hand, it is too expensive to move
away from them; on the other hand, changing them is too much effort as
well. Legacy application connectors allow us to wrap legacy software into
network services and to access them by new applications.

This way, old investments are secured, while new innovative ap-
proaches are not hindered by available software environments.

� Service Brokerage

Business rules are usually expressed as sequences or alternatives of ser-
vices. Such descriptions are made with abstract service names. For main-
tenance reasons, it is advantageous when the implementation of these
rules also uses only the abstract names; this way, only a loose coupling
exists between service provider and service user.

For these kinds of applications, a broker is needed that maps abstract
service requests to specific implementations. The part of the application
that wants to use the service can address the broker and ask for a compo-
nent that implements the service. The broker delivers a reference to the
implementing component where the request can be sent to afterwards.

� Business Rule Engines

The latest trend in application servers is trying to package the formula-
tion of business rules into an XML format, mostly in Business Process Ex-
ecution Language (BPEL) or Business Rules Markup Language (BRML).
Such formats are supposed to be editable by business users as well as by
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programmers. While the usability for business users can be questioned,
they surely introduce an interesting technology to ease maintenance and
improve flexibility in the formulation of business processes.

Application servers provide components that interpret such specifica-
tions directly; there is no need anymore to translate them to direct im-
perative program code.

� Shared Servers vs. Dedicated Servers

There is the possibility to use one application server for several appli-
cations. This is often done for server consolidation and to improve server
hardware utilization. In effect, this means that several sets of classes that
make up an application are loaded into the server. While conventions ex-
ist that prevent the obvious conflicts like name clashes, there remains a
vast potential for problems.

The different applications might need different Java releases – if not
now, then a few upgrades in the future. When one application grabs mem-
ory like crazy or uses up lots of CPU resources, this affects all other ap-
plications in that application server as well. Application servers have no
well-tuned possibilities for resource limitations to conquer that problem.

Therefore, dedicated application servers should be used for mission-
critical applications. Shared servers should only be used for business-
important or business-foundation applications. If that is a problem with
hardware utilization, we can always utilize host virtualization technol-
ogy; see Sect. 6.3.2. With that technology, it is possible to run several
application servers on one computer system without any conflicts.

High Availability for Application Servers

Most application servers support running in a clustered configuration. In
this case, several server instances run on a bunch of hosts, acting as one
big server to their clients. (A client is typically a Web server, a program
on the user’s desktop, or another application server.)

Figure 7.6 on the following page illustrates the working principle of
application server clusters. What is exceptional in the realm of high avail-
ability is that many application server cluster products do session state
sharing, i.e., a session object does not only exist at one cluster node, but
on all nodes – and updates are done concurrently on all nodes! To achieve
that, all changes are replicated to all other nodes of the cluster.

As a result of that ability, when a cluster node goes down, the session
can be continued without aborting at another node. No transient data is
lost! This is a capability that we last saw with mirrored disk drives in
this book: no outage time at all in the case of failures; no loss of transient
data either.

Since this reliability is achieved with redundancy, we still have some
management component. In this case, it is the client that must handle the
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situation of the application server having multiple IP addresses where a
network connection can suddenly go down and where this must not break
the session, but that a reconnection to another address must be made.
This requirement is not new: we encountered it when we introduced data-
base clusters in Sect. 7.2.1 on p. 199.

State replication between application servers has consequences for the
system design too. Very often, such state replication is made by broad-
casts. Such broadcasts should not be on the normal network – for one, it
would be received by many more systems than necessary; second, these
messages have very delicate latency and bandwidth requirements and
could be disturbed by other network traffic. Therefore it is recommended
that intracluster node communication is done via private networks. Such
networks can be created as VLANs. If one uses real network equipment
for it, i.e., separate physical switches, we must not forget to set up this
equipment redundantly as well.

It is important to note that application-server clusters and failover
clusters do not work together. This means that it does not make sense to
place one node of the middleware cluster on a logical host of a failover
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cluster. We have to select clustering technology on one level and stick to
it.

In the end, we need to understand the products and need to know
them inherently. Otherwise errors may happen that reduce availability.
For example, some application server cluster products distribute configu-
ration files automatically over all cluster nodes. We must not intervene
with homemade installation and replication techniques at that point.
Other pitfalls exist that can also be avoided through familiarity with
products and their idiosyncrasies.

7.5 Messaging Servers

Messaging servers are used to transport information reliably from one
IT system or IT component to another. Furthermore they ensure that the
order of messages is not changed; when a two messages are sent subse-
quently from the same sender to the same recipient, they will arrive in
the same order as they were sent.

The sender hands over a message to the message server and can be
sure that it does not get lost and that it is delivered to the recipient even-
tually. Messaging servers are crucial parts of many commerce systems.
For example, credit-card validation or payment may be a message. The
need for high availability for such servers is obvious.

Messaging servers have persistent storage where messages are kept
that have been handed over by the sender, but that have not yet been
received by the recipient. This persistent storage is called the message
queue.

Messaging servers are often used together with application servers or
transaction managers. In many current developments, J2EE application
servers are used; the J2EE framework contains a messaging server com-
ponent named JMS. There is only one JMS server per J2EE application,
unlike the applications servers. Clustering is not part of the JMS server
specification and is not supported by most products. Instead, they rely on
failover clusters on the operating system level. Figure 7.7 on the following
page illustrates that principle.

Many JMS servers have the problem that they do not implement mes-
sage queue persistency properly, and crashes can cause loss of data. One
must check the functionality of products carefully to determine if their
reliability is sufficient for the demands of high availability. It is also not
possible to use JMS for communication outside the J2EE framework. For
guaranteed database persistency and robustness, and for messaging in
heterogeneous environments, specific messaging server products must be
used. The market leader in that area is MQSeries from IBM, rebranded
as WebSphere MQ when it was integrated into IBM’s WebSphere Appli-
cation Server.
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WebSphere MQ has integrated clustering capability, but with limited
functionality as single points of failure remain. It is possible to create
several queue managers that take over each other’s work in the case of
outages, but problems remain. Message queues are not replicated, mul-
tiple queue managers just serve to enable clients to dispatch messages
without problems, but they do not ensure delivery of stored messages. If
those messages are concerned with financial transactions, we want them
delivered, of course.

Another problem is the publish/subscribe design pattern that is used
quite often. There, a broker receives messages from clients and delivers
them to subscribers that are WebSphere MQ servers themselves. Those
subscribers need a unique identifier and cannot be MQ clusters, as iden-
tifiers are not shared in a cluster. Therefore MQ clustering should only be
used to resolve performance problems, but not to achieve high availabil-
ity. Instead, standard failover cluster technology is used for that.
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Applications

In the previous chapters, we saw how high availability can be achieved
on levels of the system stack below applications. But in the end, projects
do not want to make a computer highly available; their eventual goal is
high availability for applications. We will see how we can approach high-
availability planning when we look at the application level in the system
stack: what actions must be taken on this level to achieve end-to-end high
availability for applications.

It is not the task of this chapter to repeat all the precautions and pos-
sibilities of the other chapters – all of them contribute to high availability
for applications. In particular, we will not refer to high availability on
the hardware level, as this is too far apart. But this does not mean that
hardware high availability is not of interest in an end-to-end view, quite
the contrary. It just means that we cannot contribute something new to
hardware high availability in this chapter.

Each application has special requirements and one cannot easily give
one-size-fits-all recommendations for how to approach application high
availability in general. But painted with a very broad brush, there exist
three categories of applications:

1. Commercial off-the-shelf (COTS) software is applications that we
buy, configure, and deploy.

2. Buy-and-modify software represents the middle road where a COTS
application is bought and adapted to local needs within the company
or by a contractor. Such adaptation is more than mere configurations,
but includes adding significant pieces of our own code. Some very im-
portant applications fall into this category, e.g., many complex SAP
installations with their own ABAP programs.

3. In-house or one-off software is applications that we build. It does
not imply that every single piece is written in-house; quite often exter-
nal components are used. These external components might be large,
e.g., databases or application servers; therefore, the task is not only
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to build new software, but also to integrate existing components. The
distinguishing factor between in-house and buy-and-modify software
is the ability to decide about system design and base functionality
oneself.

Clearly, there are different options that one can use to attain high
availability for applications, depending on these categories. While in-
house software can be especially tailored for high availability from the
start, such ability does not exist for COTS software and also not for in-
house applications that exist already. In any case, applications either
have to bring built-in support for high availability with them, or one has
to live with add-ons. For buy-and-modify software, it is even worse: sim-
ilar to COTS software, one is usually not able to change the software
enough to include high availability in it – but if it has high-availability
options already, one needs to pay attention that one does not destroy
that ability through the modifications. For example, taking up our SAP
example from before, ABAP Objects is powerful enough to render high-
availability precautions unusable.

But technical approaches cannot be clearly separated by those appli-
cation categories. In particular, as we will see later, the most important
approaches work for all categories. Therefore, the structure of this chap-
ter will be oriented towards the technical solutions and will present them
in sequence. For each technological approach, we will mention especially
how this approach is used for the three application categories.

So let us start to look at approaches first that work for all categories,
and then go to the approaches that are only sensible for applications de-
veloped in-house:

• Failover clusters are a mature method for all application categories
and will be presented in Sect. 8.1.

• Middleware provides intrinsic capabilities to support high availabil-
ity for all three application categories and will be featured in Sect. 8.2.

• Development from scratch is an approach that is only possible for
in-house software and will be looked at in Sect. 8.3.

• Code quality is an important property that is needed for in-house
applications and for buy-and-modify software. Section 8.4 presents
the essentials, though a complete coverage of that topic is beyond the
scope of this book.

• Testing the application for its high-availability properties is as im-
portant as testing it for functionality and is discussed in Sect. 8.5.

� Beyond Technical Approaches

The presentations in the following sections are technically focused. But
we must not forget that it is as important to have prepared processes
to operate the system, change it, and handle errors. For such processes,
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information is necessary. We need to make sure that we have an up-to-
date list of:

• Process documentation (mostly incident- and escalation-related)
• System documentation (operations and administration manuals)
• Important contacts (Business owner, technical staff, escalation con-

tacts, vendor contacts)

This list must not only be available to the project manager, it must be
available to all persons who have to handle incidents.

You are advised to keep that list not only in electronic form. In the
case of major outages, it might not be accessible anymore. Save it on a
CD, maybe even print the most important information (e.g., the contacts)
out, and store it in a safe but accessible place. Chapter 10 tells more about
such commonsense precautions.

8.1 Integration in a Cluster on the Operating System
Level

Section 6.1 introduced failover clusters which operate at the interface be-
tween the operating system and application programs and are especially
useful for applications with persistent data storage. Section 6.2 presented
load-balancing clusters for applications without a persistent state. These
technologies can be used to achieve high availability for most applica-
tions; this section will explain how that is done best.

Application state and persistent data storage are the key factors for
selecting the cluster technology. For applications without session states
and without persistent data, load-balancing clusters can be utilized in
simple setups. Proper release processes must be established to roll out
new releases, change the configuration, and transfer static data to all
cluster nodes, but apart from that this technology works like a charm.

Applications with session states or with persistent data need a bit
more work. There we can utilize failover clusters. It is important that the
data-holding component is relevant for the selection of the technology. If
an application stores its data in files and these files are an inherent part
of the application, then failover clusters are the right choice.

This is independent of the location of the stored data. Even if the data
is stored in a database or on a network file server, failover clusters are the
way to go, and a load-balancing cluster will not work. In that case, an ap-
plication would need to have the ability to run multiple instances at the
same time and all requests need to be done in one network connection.
But that is very rare; usually we cannot start an application multiple
times, have arbitrary distribution of requests to all running instances,
and let them have read and write access to the database. For one, many
applications cache data and that would need to be invalidated for write
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operations. Furthermore, many applications have several network con-
nections per client session, in particular those that utilize HTTP.

In the rest of this section, we will leave load-balancing clusters aside.
If an application can utilize them because there is no persistent data,
then no further actions are needed. But a failover cluster needs to know
quite a few things about the application that it covers; therefore, we will
continue with the description of that technology.

In fact, usage of this mature clustering technology for application
high availability is the most practical method today, for all application
categories, be they COTS, in-house, or buy-and-modify software. That is
not because this solution is the best, technology-wise. Quite the contrary,
clusters on operating system level often have inherent problems because
they have to treat applications as black boxes; therefore, often they do
not know enough about the application and have to react crudely to ap-
plication error situations. The most prominent example is a crash that
makes persistent data inconsistent. Many cluster implementations have
a hard time to handle that situation, since recovery of data consistency
often needs longer than expected failover times.

On the other hand, such clusters enable limited redundancy for appli-
cations that works as long as one is able to recover from a crash and get
consistent data and a working system again by restarts. Most software
systems are like this, most of the time, so this strategy remains very suc-
cessful in practice.

For COTS and buy-and-modify software, this approach is often the
only possible solution as one cannot modify their sources anyhow. For in-
house software some redundancy can be achieved through middleware
clusters; we will have a more detailed look at this in Sect. 8.2. But usage
of failover clusters is also a valid approach for in-house development, as it
lessens the demand on the developers, who will already be busy realizing
the functional requirements.

Application Requirements for Failover Clusters

As mentioned already, clusters need information about applications, and
as Sect. 6.1.1 on p. 157 described, failover services place some demands
on applications. The rest of this section will provide a check list of crite-
ria that an application must fulfill before it can run in a failover cluster
environment. For in-house software it is usually easy to satisfy these re-
quirements; bought software must be checked to see if it can be configured
accordingly.

The description focuses on UNIX or Linux failover clusters, which
makes it possible to list specific items to look at and not just abstract
principles. Similar requirements must be fulfilled for Windows clusters,
as the principles are the same.
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The combination of application and cluster software must meet the
following objectives:

• It must be possible to control and manage the application’s state: we
must be able to start and stop it, must be able to see if it is running,
must be able to reset it to a fresh state, etc.

• It must be possible to migrate an application from one cluster node
to another. This involves shutting down the application on one node,
switching programs and data storage to the new node, and starting
the application there.

• It must be possible to update an application without much trouble.
This is often the case for good release management and good installa-
tion policies. The more manual work must be done on several cluster
nodes, the more difficult it gets to do a successful update.

• It must be possible to recover from an application crash. This does not
only mean that one must be able to restart an application automati-
cally. It also means that the recovery must turn inconsistent data into
a consistent state.

• It must be possible to handle incidents quickly on a technical level.
Achieving this objective is influenced by the application’s code quality
and robustness. Good applications that can be easily implemented in
failover clusters make it easy to detect and handle failure situations.

The rest of this section describes several common requirements that must
be met to fulfill these objectives. Such requirements spell out technical
details that application implementations must take into account when
they work in failover cluster environments.

The recommendations are the same for all application categories, be it
COTS, buy-and-modify, or in-house software. If bought software does not
have the necessary capabilities, adequate configuration and scripts must
be supplied during implementation.

� Independence from the Physical Host

Failover cluster software does not hide the physical characteristics of a
cluster node. It establishes a logical host for a service and enables migra-
tion of that service to another cluster node, but that logical host is not a
contained environment. There is the danger that those who implement
applications are not aware enough of that fact, and happen to use specific
capabilities of the physical host, and not just of the logical host. But this
prevents the failover cluster software from working, since the application
would not work on other nodes.

Therefore no application must use machine-specific configurations.
Particular culprits are use of

• hostid
• uname -n
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• IP addresses of physical network interfaces
• Name of the physical host

The issue of network interfaces deserves special attention. For incom-
ing requests, one does not have to worry much. TCP connections are an-
swered with a source address where the request was received. This is im-
portant, as connection tracking firewalls would cap that TCP connection
otherwise. Most UDP services do so likewise.

Services should only bind to the IP numbers of the application. They
should not bind to all interfaces. If that is not possible, a thorough review
should be made – after all, it is not possible anymore to supply several
logical hosts with similar services in the same cluster.

Outgoing network requests (i.e., originating from the application) are
another matter though. By default, they use the network interface’s phys-
ical IP address and not the address of the logical host. But firewalls and
intrusion detection systems analyze network traffic by associating ser-
vices with IP addresses, and they should associate that traffic with the
logical host, and not with the cluster’s physical host. Otherwise they
might block the communication. Therefore it is advisable that the ap-
plication service’s logical IP address is used for outgoing requests. This
usually needs special configuration in the application software.

Here is a pitfall: such requests for machine-specific information may
happen in libraries or in frameworks. Therefore even when no physical
host information is recorded in any configuration file, still some library
might make a lookup of the host name and then use the physical host’s
name instead of the logical host’s one. This is one of the many reasons
why it is mandatory for us to test failovers, to be sure of not having such
surprises.

� File Locations

An application will have at least one associated volume group, or a remote
file system (NAS or SAN). All data of an application must be on these
volume groups.1 Since volume groups are the migration unit in the case
of a failover, this ensures that all data is migrated to the new node.

It is recommended to put program files and the application’s configu-
ration on the application’s file systems as well. That way, these files will
be migrated as well in the case of failovers. If we installed them on sys-
tem volumes, we would need to install and configure them on all physical
nodes identically. While this is quite easy for the initial installation, ex-
perience shows that updates are not made as reliably and often leave
physical nodes in inconsistent states. Better to avoid that from the start
and hold programs and configuration only once, on the volume group that
moves.
1 Either in files on file systems, or on raw volumes. Usage of raw storage volumes

was common a few years ago, but is not used often anymore.
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The only exception is middleware or support program files (Web serv-
ers, database servers, runtime environments for Java, Perl, Python, etc.).
If these programs are shared by several logical hosts that run on one
node, it might be preferable to install them once on each physical node,
on system volumes. Please note that storage usage is not an input for this
decision; disk storage is just too cheap for that. Section 6.1.2 on p. 166 has
a longer discussion on the issues of software installation and updates in
cluster environments.

Log files should be placed on the application’s file systems as well.
They are urgently needed for root cause analysis in problem management
and thus should be available after a failover. If they are placed on system
volumes, they might get lost and prevent urgent repair actions. The issue
of syslog-based logging is described in Sect. 6.1.2 too.

If developers or product managers tell you that it is not possible to re-
locate configuration and logging files because “their location is hardwired
into the application,” do not believe them at first hand. Most often it is
possible to install symlinks in the hardwired locations that point back to
the application’s file systems where the real files are placed. Of course,
these symlinks must be installed on all physical hosts then – but they
do not change, and they usually even do not change during updates, and
thus can be installed once.

Process identifier (PID) files may be placed in or outside the appli-
cation’s file systems. If they are placed outside, they must be located in
an existing directory, like /var/run. We recommend placing them inside
though.

� Provisioning

Application installation packages must not contain or create system
startup actions, like scripts in /etc/init.d or registration of applica-
tion services. Service activation and deactivation is strictly a task of the
cluster software; the usual operating systems methods are not used.

Services that use inetd need to be rewritten to use a standalone dae-
mon process. It is not possible to utilize failover clusters for inetd ser-
vices. During failover the service would need to be discarded from the
host-global configuration file /etc/inetd.conf and would need to be
inserted at the new cluster node. It is not realistic to assume that we
could implement that in a reliable way.

If files or directories must be installed outside the application’s file
systems, several installation packages must be created. There must not
be files inside and outside the application’s file systems in one package.
That package will be installed on the default node for this logical host.
If there were files outside the application’s file system, those files would
only be installed on that physical node and would be missing from the
other nodes. To enable installation of these files on all other nodes, it is



222 8 Applications

best to put them in their own installation package and install that on all
physical hosts of the cluster.

� Start and Stop

One needs start/stop/restart actions for each resource. Stop must really
stop, start must really start. The stop action must handle the case where
the application must be aborted because it hangs. The start action must
check that the application does start, in fact, i.e., both actions should
check that they were successful. Otherwise migration to another cluster
node might not be possible anymore, or perpetual node switching might
occur.

Reliance on pid files as semaphores (i.e., process existence marker) is
bad; their only reason is to record the process ID, and their existence does
not imply that the application is really running. The scripts must also
assume that more than one instance of that application is running on a
machine. Therefore ps/grep pipelines are not a good choice to determine
the process – one needs to be very sure that one really has located the
correct process to be shut down.

If the start action on booting and during normal runtime is different,
the startup action should use internal discovery of that situation. One
could provide a separate boot action, but internal distinction is better as
it is easily done on all operating systems and is more robust.

Start actions should be idempotent: one can always call them, they
detect that the resource is active and running and do not influence it. It
may be that they trigger a reload of the current configuration, which is
OK as variation.

Start actions must not require interactive input. They need to work
completely in batch mode. This is a particular problem for encrypted ser-
vices that usually need a passphrase to read the private key. Either the
keys must be stored on a hardware token or they must be stored without
passphrase protection. The latter often needs clearance by the security
office of your company.

The restart script must assert proper stop and start of the resource.
It needs to repair inconsistencies if necessary. For example, perform a
database table consistency check, or other actions.

In noncluster environments, reload of a changed configuration in run-
ning service processes is often done as part of the start/stop action and is
sometimes named restart. But this is not the restart action that we mean
in the cluster context; configuration reload is not handled or supported by
cluster software. It must be delivered by external means.

� Batch Jobs

If you use cron for job management, it is necessary to establish a method
that allows all jobs on all cluster nodes to be activated. cron does not
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supply such a method, neither does the failover cluster software. Sec-
tion 6.1.2 on p. 166 describes an easy-to-implement way of doing so by the
onloghost script. Otherwise one would need to de-establish or establish
cron jobs as applications are switched – and that calls for instability.

Scripts to be called by cron should be able to assume that the applica-
tion is online; they must not need to check for that themselves. But they
must not demand that standard I/O streams are bound to files on the
cluster’s file system; instead, input and output files must be determined
automatically or passed as arguments.

Long-running batch jobs should have checkpoints. On restart, they
should notice if they have been aborted and use the checkpoint informa-
tion to save computation time.

As a last remark on cron, it should be noted that this is only usable
for very basic and simple job management. When we have complex de-
pendencies of batch hobs, it is better to use proprietary job management
software products. When one goes shopping for such a product, a manda-
tory item on the checklist should be if it is cluster-aware.

8.2 High Availability Through Middleware

Most in-house applications that are developed now use middleware prod-
ucts intensively. Many of them store their data in a database, or use
an application server to get lots of functionality like session handling or
transaction semantics for usage in the application.

In fact, 99% of all in-house applications that need high availability
should use this approach and not develop any methods from scratch. The
probability that the middleware vendors got it right with better func-
tionality than our application programmers is quite high – after all, they
are specialists in that area, whereas application programmers have other
skill preferences. Only in very rare circumstances, where the business
requirements demand the ability to cope with many application failures
and we have appropriate developer skills, are we going to use the “from
scratch” approach that we present in Sect. 8.3 on p. 225.

As well, many applications that we buy deploy middleware products,
and this is often still visible. So one has an Oracle database, a Web server
front-end, and a BEA application server; the actual application comes in
the form of Java classes that are integrated into the application server.
This is especially true for buy-and-modify software.

In all these cases we can establish high availability for these middle-
ware products, as explained in Chap. 7, and greatly improve the avail-
ability of our application this way, i.e., a load-balancing solution for the
Web server will not change its behavior in any way and therefore pro-
vides a substantial improvement for high availability. The same is true
for a database server and its available high-availability options.
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� Pitfalls and Limitations

When we utilize middleware high-availability capabilities, we must make
sure that we realize complete redundancy, until the bottom of the system
stack. For example, a highly available application server is not sufficient,
database and web servers must be highly available too. Since the appli-
cation is integrated into an application server, one tends to care for that
server first – but one must not forget the other components of the appli-
cation and realize high availability for them as well.

Incidentally, there are limits to the high availability that one can
achieve with middleware products. In particular, software errors in the
application are often not recovered this way. These errors may be re-
peated and not go away at restarts, causing inconsistent data and con-
tinuous failures. Other errors are caused by too much computer resource
usage (e.g., a memory leak) and the application server cluster notices
that too late. An application server cluster only protects against soft-
ware crashes when functionality can be restored by restarts and when
the crash is not repeated immediately.

But luckily this is the common situation. We do not need to paint ev-
erything in black; most of the time aborts, recovery, and restart of appli-
cations work quite well. Since the occurrence of nonrecoverable failures is
so small, the residual risk is also quite small. Therefore it is often decided
that one can live with that residual risk that leads to a major outage in
the case of a severe software error. Of course, if the damage would be very
high for such a major outage, disaster recovery should be planned for and
prepared in order to mitigate that residual risk too.

� Application Servers

But an application needs to be designed to work in a cluster environment,
which does not come out of the box. If we have bought the software, we
have to check with the vendor if it does so.

For in-house development, the most important consideration is the
session design. The need for session state must be carefully analyzed,
designed, and implemented. Often, state information that shall be repli-
cated must be made persistent, or marked especially. Such marking
comes by usage of application-server-specific APIs, e.g., by using special
classes or interfaces. One must also assure that one is able to serialize
those objects, a precondition for sending them across a network to syn-
chronize the server state. This all boils down to our having to decide our-
selves what information can be lost, and what must be kept in the case
of a failure. This cannot be done automatically by the application server,
but is a property of application design.

This means particularly that we need to decide if and when sessions
can be aborted. If its not a big hassle to abort them, it becomes much
easier; only transaction results have to be made permanent. If sessions



8.3 High Availability From Scratch 225

should survive an outage, we need to decide if there are small dialog
changes that we can ask the user to repeat and which may not be per-
manent.

� Client Awareness

The client must be prepared to work with a cluster as well. First of all the
application server connection might break and must be reconnected. Most
clients abort in such a case. Maybe the session context needs to be built
anew on the client side in the case of reconnects. Maybe the user has to be
told about a small problem that needs a repetition of some dialog steps.

If the client interface is realized as a Web front-end, we do not have
a problem here. Web browsers have no connection state: here the Web
server is the client of the application server. Almost all Web development
frameworks provide proper integration between Web server clusters and
application server clusters from the start – those that do not are not worth
using.

8.3 High Availability From Scratch

This section starts with a word of caution. If one wants to develop an
application that is inherently highly available from scratch, one must be
very certain (1) that one knows the requirements, (2) that the necessary
skills are available, and (3) that one has appropriate resources for that
undertaking. Very often, only one or two of these necessary preconditions
are true.

It is a very rare application that must be implemented from the ground
up anew to be highly available. These are the kinds of applications where
their failure would endanger lives, or where any kind of failure must be
avoided at all costs. For example, the fly-by-wire control systems of civil
aircrafts fall under the requirement that catastrophic failures are “not
anticipated to occur over the entire operational life of all airplanes of one
type” and that means a 10−9 probability of failure per hour [4]. Space
exploration also has high requirements for software availability and reli-
ability – after all, one cannot send one’s IT staff to Mars or Venus to repair
the software. Nevertheless, with all the effort, talent, skill, and resources
that go into creating fault-tolerant software in these areas, failures still
happen.

Most applications are better off utilizing existing middleware compo-
nents, as explained in Sect. 8.2. Even when one writes a new middleware
component (after all, this prefabricated high availability must come from
somewhere), one should utilize existing modules and code.

With all those preliminary warnings about the difficulties, when do
we use application development from scratch at all? Well, application
high availability from scratch is used to implement fault-tolerant systems,
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i.e., applications that can continue to operate properly in the presence of
failures and outages of component parts. Those systems are always dis-
tributed systems that run on a set of components at the same time.

Andrew Tanenbaum wrote a seminal textbook on distributed comput-
ing [10], and stated, “Distributed systems need radically different soft-
ware than centralized systems do.” Therefore, application developers who
want to use that solution approach and who do not have sufficient expe-
rience with distributed systems already are asked to learn about it first.
The textbook cited is a very good start on the senior or graduate level, as
are others on this topic.

It is beyond the scope of this book to give an introduction or recom-
mendations. But what we can do is to list some of the central terms that
describe areas where development of monolithic and distributed systems
are different. These are areas where distributed fault-tolerant highly-
available systems need to realize requirements that are above the norm
of typical application code:

Communication between physically distributed systems in the face of
flaky communication links and instable systems. Different subsys-
tems should be able to have arbitrary outages without disturbing the
overall outcome.

Processes must be controlled carefully and must not stay without super-
visors. If they do not work within their prescribed parameters, the su-
pervising infrastructure processes must intervene and get them back
on track.

Naming must be handled uniquely over the whole distributed system.
In single-address-space systems, naming of objects is mostly easy: one
just takes the address for identification, or utilizes a central ID repos-
itory for persistent objects. Single-computer systems still can utilize
such a central ID system.
But a distributed system that spans over several computer systems
still needs to identify its objects. When one introduces a central nam-
ing broker, that component becomes a single point of failure and intro-
duces risks again that must not be taken for fault-tolerant systems.
Therefore, decentralized approaches for object naming and identifica-
tion must be utilized.

Synchronization handles the updating of objects and transaction se-
mantics in distributed systems. In the worst-case scenario, one can-
not even rely on shared time for coordination, but luckily research in
distributed computing has provided mechanisms and theories even
for that situation.

Consistency and replication is a whole world of problems in itself. It
is not only application data that must be replicated, but usually the
programs themselves as well. Most often it is necessary to run several
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different program versions in different subsystems, at the same time,
because it is not possible to update them all together.

Caching is an important subproblem of consistency and is a research
area of its own – it is very hard to balance the need between perfor-
mance and correctness in the right way.

Fault tolerance is another ability that must be designed in from the
start. This is the most difficult part to get right – and there is no way
that one can be really sure that one was successful.
Software design diversity, i.e., writing separate applications for the
same requirement is an option to achieve fault tolerance, as shown
in [4]. The studies cited in this article show the advantages of this
class of methods for high availability. But it should also be noted that
Brilliant et al. [1] showed that while multiversion programming im-
proves reliability by wide margins, it is still quite likely that common
mistakes are made by different persons performing the same task.

Clearly, writing highly available applications from scratch is hard
work, with exceptional requirements. If one needs them, one should pay
utmost attention to getting really good, bright, and talented application
architects, designers, programmers, and testers on board. Without a top-
notch developer group, this endeavor is bound to fail.

8.4 Code Quality Is Important

If we do in-house development for an application that is to be highly avail-
able, there is one important point to remember:

Code Quality Matters!

This is independent of the development approach, if we write the appli-
cation from scratch, utilize middleware components, or if these are modi-
fications to bought software: a badly written application cannot be made
highly available.

In fact, this truism holds also for bought applications. The only dif-
ference is that we cannot check for code quality of proprietary software
as easily as we can for in-house developments. This is one of the advan-
tages of open-source software, where we can get an impression ourselves
of whether the software code has been written in a professional style.

Most problematic for highly available applications is resource man-
agement: memory, CPU, and disk usage. Memory is especially important.
Many applications are long-running, but still have memory leaks. It is
notoriously difficult to get manual memory management right for long-
running programs; therefore, it is harder to develop them with C or C++.
Programming languages with automatic memory management (e.g., Java
or C#) help here.
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Performance is not an excuse for writing a server application in C
completely today. C is a language for systems programming, but not for
application programming. In the case of performance problems, we can
always measure to detect the hot spots, and rewrite just this function
or module in C. (Most often it will be I/O problems anyhow.) Premature
optimization is the cause of many errors, as the proverb says “First rule
of optimization: ‘Don’t do it.’ ”

That is not to say that performance is not important. Careless pro-
gramming will cost quite some performance overall – in every language.
Too many allocations, memory fragmentation, and excessive overdesign
with lots of superfluous layers cost performance without creating hot
spots.

The best advice that can be given here is that good programmers
should program and should not be put in charge with management tasks.
Less qualified programmers should use other projects to enhance their
skill; high-availability projects are there for the best. Also, it is impor-
tant that enough time for code reviews and functional tests is allocated.
Without them, the whole development is on unsafe ground.

The whole project team – project lead, architect, and programmers –
should have read the Mythical Man Month by Frederick Brooks [2]. If it
was some time ago, it is recommended to reread it. This book is a warning
against hubris. It is a bit dated on technical matters, but it is not at all
dated on matters related to individuals, organizations, and scale.

The most important lesson from that book is: Plan one to throw away,
and write for maintenance. As the saying goes, “each engineer creates a
design that is as complex as he can barely handle.” – let us try to prove
that proverb wrong and use a design that is simpler. Complexity costs: it
is harder to think about, harder to reason about, harder to test, harder to
debug, and harder to maintain.

At every step of the way, we need to remember KISS (keep it simple
and straightforward), one of our basic approaches to achieve high avail-
ability. We need to ask ourselves each time: “Can it be done in a simpler
way?” If not, we must write up the rationale for the complexity. We need
to find out the essential complexity of our task, and shed the nonessential
parts. As Albert Einstein said, “Everything should be made as simple as
possible, but not simpler.”

Another good precaution is courses for developers that raise the aware-
ness of operational and implementation problems. This makes program-
mers see beyond their personal development environments into the envi-
ronment where the application must be operated eventually. Creating an
application that can be implemented easily and operated well is part of
the job, and it is worth emphasizing that from time to time.

Coming back to issues of programming, it is not easily possible to
give proper advice on programming methods and styles for arbitrary
programming languages. But there are lots of programming-language-
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specific books with tips and pitfalls for good programming. Of course,
high-availability projects are not good places for programmers to learn
about these things: they should be acquainted with them already at the
start.

But we can list some tips that are useful for essentially every pro-
gramming language:

• Validate all input values, check all return values. Too many errors in
software are caused by ignoring these two simple rules. This is also the
reason why it is better to use a programming language with exception
handling – here one is forced to define exception handlers and it is also
possible to define them both globally and locally.

• Utilize proven and stable libraries, do not invent the wheel anew.
Eventually, this leads to utilization of middleware components and
application server frameworks.

• The appropriate architecture is important. Use design patterns, but
do not overuse them. There is no need to use a J2EE framework that
needs lots of resources when a simple program does it as well.

It is important that application programmers also take operational
aspects into account. Too often they only care for their functional require-
ments. The application must be manageable. Properties to look for are:

• Support of restart after crashes.
• Monitoring must be supported. One should think about instrumenta-

tion of applications for better monitoring; that is not hard and pays
back with lots of advantages for high-availability operations.

• Good logging facilities (not too few, not too many, good messages).
• Availability of consistency checks.

With these properties in place, good resource management, and good code
quality, we will have no real problems in making our application highly
available.

8.5 Testing for High Availability

The task of application testing is often to create the assurance that the
application meets its functional requirements. For each function point a
test exists that checks if the application satisfies that requirement. While
this is also needed for highly available applications, it is not sufficient. In
addition we also have to test for nonfunctional properties of the software
and need to check if it can be operated well and if it handles failure sit-
uations gracefully. For example, we need to do end-to-end testing if an
application recovers gracefully after an application or system crash, and
cleans up inconsistent data states afterwards.
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When we created the architecture and system design of our applica-
tion, we noted objectives, requirements, and scenarios, as described in
Chap. 3. Those failure scenarios are crucial for test planning as well.
From them we can construct test scenarios that create such failures, see
how our application reacts to them, and if it fulfills the promises of our
system design to handle them.

This way, we do not only test if our application works as intended in
normal circumstances, but also if it works as intended in extraordinary
circumstances or failures. High-availability tests should first of all try to
create failure, and not to avoid them. We are interested in the applica-
tion’s behavior in these borderline cases because failures are the circum-
stances that threaten availability, not normal operations.

Part of test goals is the detection of limits. We do not only want to
know if the application runs with the available resources, but we also
want to know how big the gap is, the reserve buffer, between utilized and
available resources. As an example, let us take the shared buffer area
of a database server. Normal tests would check if there is an overflow
and would leave it at that if no problems occur. High-availability tests do
not stop here, but reduce the memory size so much that errors do occur,
to detect the configuration limits of the database server. Then we can
raise the shared memory buffer size again by a sufficient amount that
now represents a known buffer for this application environment, and is
available for unforeseen numbers of user requests.

In the same direction, tests for application robustness have the same
aims. It is not sufficient that an application behaves properly for correct
input. Instead it must behave properly on invalid input as well: it must
neither crash, nor must its performance be reduced to a crawl.

No high-availability application testing can be complete without stress
tests, sometimes also called load tests. One generates simulated or real
user requests and tests how the application behaves. Tools exist to help
with request generation and automated response checks. The main dif-
ficulty with stress tests is the demand for realistic request patterns to
create a realistic load simulation. For a new application, only approxi-
mations can be used; here the request patterns are often not adequate.
But this is a different situation for updates of existing applications. Here
we can record request/response patterns of the previous release and use
them for testing the new software release. To support that, good applica-
tions are designed to output such metrics that we can use for performance
and capacity planning.

When we test an application that utilizes other components, e.g., ap-
plication or database servers, we should not forget to test such compo-
nents on their own. During normal application tests, such dependent com-
ponents are only utilized to a small degree. Erroneous situations will sud-
denly access parts that might fail, but it is hard to create such erroneous
situations in our simulated test environments.
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We can access the middleware components on our own and cause fail-
ures in their operation, to observe how the application reacts to them. For
example, an application may or may not survive the failover of a database
server, since session information might be lost. Tests are there to assure
that this behavior is expected, and that the application’s functionality in
such failure situation is according to the objectives and requirements of
the architecture.
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Infrastructure

In this book, we first met the term infrastructure in Chaps. 1 and 3. Sec-
tion 4.1.1 eventually provided a first definition when the system stack
was introduced. Infrastructure is the box in the system stack that rep-
resents the software and hardware components that are used by applica-
tion, middleware, or other categories, but are not integrated. This chapter
looks into that box and attempts to present its content, the infrastructure
components.

Like all other components, they utilize the same principles to realize
high availability and disaster recovery: redundancy and robustness, as
explained in Sect. 4.1. As outlined there, virtualization is an important
part to realize redundancy, just like in other component categories.

“Used, but not integrated” differs from project to project – therefore
we find different usages of the term infrastructure. Tongue-in-cheek, one
could explain infrastructure also as “infrastructure is everything that is
not one’s own responsibility.” This will be reflected if you just ask some ar-
bitrary colleagues who are responsible for applications, what they think
that infrastructure is. Most of the time, it is those services that they do
not have to configure themselves but which they can take for granted. In-
variantly, the network is mentioned, but also databases, clusters, external
storage servers, and others.

Most often considered as infrastructure components are:

• Network
• Basic services like Domain Name Service (DNS), Dynamic Host Con-

figuration Protocol (DHCP), Network Time Protocol (NTP), and others
• Backup and restoration
• Monitoring

These are also the components that will be covered in this chapter. They
are mostly components or services that are needed for servers, as this is
the main focus of this book. But some services, e.g., DHCP, are also about
highly available infrastructure in general.
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Other candidates for infrastructure components are handled at differ-
ent places in this book, since they are more often involved in application-
centric projects too.

Storage servers (SAN or NAS) are described in Sects. 5.2.2 and 5.2.3.
They should be discussed together with other storage topics.

Failover clusters are described in Sect. 6.1. They are so important and
are so involved in most high-availability projects that they almost de-
serve their own chapter.

Load-balancing clusters are described in Sect. 6.2, where they make
up the other part of Chap. 6. They are also an integral and essential
part of many high-availability projects.

Databases are handled in Sect. 7.2. They must be configured for any
nontrivial application; high availability and disaster recovery for
databases must be given special thought for any project, since they
hold most of the essential data.

Application servers are handled in Sect. 7.4. Even though can be uti-
lized for several applications at once, they are so intertwined with
any application design that each high-availability project must look
at them separately.

9.1 Network

The most important infrastructure component is the network. The ability
of computers to communicate with each other is mandatory for almost
all applications of today. There are few enterprise-class applications that
can function without network access – most of them are big nightly batch
jobs, e.g., at banks.

Some applications are explicitly designed to withstand loss of network
communication for some time. Manufacturing IT systems in plants have
this ability sometimes; they shall be able to control or support the plant
even if the company’s network has an outage; they only need a LAN con-
nection within the plant building. The financial damage would often be
too large otherwise. But this is possible because their mode of operation
is localized, and no users need to access a server via a network. If they
do, buffering or lead times (uploading data some time before it is actually
needed) can be utilized to allow operation without a network for some
time. But client/server or multi-tier applications are the norm for almost
all other application areas.

Many communication protocol suites can be used on networks. ISO
even produced a reference model for it, the Open Systems Interconnec-
tion Reference Model (OSI Reference Model or OSI Model for short). This
model is very valuable for discussion of network issues, as it provides
abstractions and clearly defined terminology. Table 9.1 on the next page
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Table 9.1. Open Systems Interconnection (OSI) Reference Model

Layer Name Focus

7 Application Network interface to application
6 Presentation Manage representation of data, encoding of values,

data compression, encryption
5 Session Manage the data exchange between two applications:

establishment, termination, checkpointing of a
connection

4 Transport Transparent transfer of data between applications,
controls reliability of a link

3 Network Transfer data between two systems that may not be on
the same network, support connected networks, use
logical addresses with a hierarchical addressing
scheme, find the path between two computers on
different networks

2 Data link Transfer data directly between two systems that are
on the network, use physical addressing with a flat
addressing scheme

1 Physical Electrical and physical properties of devices: layout of
pins, voltages, termination, cable specifications,
representation of signals in different media

presents its seven layers. While it is a good tool for analysis and discus-
sion, it is not a good prescript for implementation structure; the strict
separation of layers and their restricted interaction is too complicated
and does not work well in practice.

The most prevalent examples of networks are Ethernet1 and the set
of communication protocols that are often referred to as Internet proto-
cols or IP protocol suite.2 The IP suite can also be used to show that the
OSI model is good for analysis, but does not reflect the reality of protocol
suites. IP is clearly on layer 3, but TCP cannot be placed on one layer
exactly – it is both on layer 4, because it realizes transparent reliable
transfer of data, and on layer 5, because it contains establishment and
termination parts.

Very often, when we discuss network design, we take the physical
layer (cabling and devices) for granted, discuss the data link and the net-

1 Ethernet is just one of several protocols on the data link layer, there is also
Token Ring, FDDI, HDLC, Frame Relay, ATM, Fibre Channel, SDLC, and oth-
ers. Nevertheless, we will concentrate on Ethernet, as it is the most important
network type that you will encounter in practice.

2 While SNA, Windows’s NetBEUI/NetBIOS, and AppleTalk are all protocol
suites that one will encounter in many companies, the IP suite is the domi-
nant communication protocol of today and convergence of the other protocol
suites to IP is expected.
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work layer, ignore the session layer, and lump together the presentation
and application layers into the application protocol. This section will fol-
low that discussion approach roughly:

• The physical layer discussion in Sect. 9.1.1 looks only at high avail-
ability for devices. Cabling is considered in Appendix B, where we dis-
cuss data centers.

• High availability for the data link layer (layer 2) is discussed in
Sect. 9.1.2.

• The default gateway is an important interface between the data link
and the network layer (layer 3) and is handled in Sect. 9.1.3.

• The network layer is handled next in Sect. 9.1.4.
• Firewalls do not fit in the layer scheme: they are components that

are concerned with all layers above the network layer. But they are so
important that they deserve their own section (Sect. 9.1.5).

• Disaster recovery also does not fit in the layer scheme, but gets its
own Sect. 9.1.6.

• Application-level protocols are handled implicitly by presentation
of important infrastructure services in Sect. 9.2.

In discussions about networks, we often encounter several terms that
we want to explain first:

Local area network (LAN): A computer network that covers a small
geographical area and that usually does not involve leased communi-
cation lines or VPNs. Usually, the network that covers a small campus
or a site is named the LAN. LANs typically have both high bandwidth
and very low latency for network connections.
Most LANs today are switched Ethernet networks, connected by
routers, and run the IP suite. Wireless LAN (WLAN) networks are
becoming increasingly popular, but are beyond the scope of this book.

Virtual LAN (VLAN): A virtualization, a network that is logically inde-
pendent and that has been built on top of a physical LAN.
They are used for segmentation (to create Ethernet broadcast do-
mains) and to be able to share equipment over several independent
structures. But this is not relevant for the topics of high availabil-
ity and disaster recovery – everywhere in this chapter where it reads
LAN, we can say the same for VLANs.

Metropolitan area network (MAN): This is a network that covers a
large campus or a city. It is made up of several site LANs that are
connected by high-speed connections. Within a MAN, high bandwidth
is common, and decent latency may be realized. Up to 100 Mbit/s
and 100-km cable length, we can even expect low latency; only with
speeds of 1 Gbit/s and above and distances of 20 km or more do we get
medium latency.
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MANs that are specific for a company or campus are sometimes called
corporate area networks or campus area networks: both are abbrevi-
ated as CAN.

Wide area network (WAN): A network that covers a wide geographical
region, larger than a city. It is made up by connection of many LANs
or MANs via routers, often connected by leased lines. Though WAN
bandwidth may be quite high today, it is still a magnitude smaller
than that of LANs. Latency in WANs is often quite bad; applications
or system designs that involve WAN usage have to take that into ac-
count.

Virtual private network (VPN): A network that is created by the con-
nection of LANs or hosts to other LANs, using tunneling technology
over other networks. For systems in a VPN, it works as if the connec-
tion were over a dedicated leased line.
Usually, the tunneling technology ensures confidentially and authen-
ticity of network traffic by encryption and digital signatures. The most
prominent example of such technology is IPsec, although SSL-based
VPNs are currently being deployed more often.
The standard use case of a VPN is to connect an external site or
a home-office worker to the Intranet via the Internet. This is much
cheaper than leased lines, and often more reliable.
But VPNs may also be used over other networks. They can be used to
secure WLAN connections, use a private WAN in between, or even
within a corporate network to create secure “network islands” for
higher confidentially and security.

Active network component: The devices that are used to build a net-
work: switches, routers, hubs, firewalls, etc.

Intranet: The private network of a company. This can be a LAN, a MAN,
or a WAN. Most often this term refers to the usage of the IP proto-
col suite within a company network, including the application-level
protocols like HTTP and SMTP. Many intranets are connected to the
Internet, but that is not necessarily the case.
Nontechnical people often use these terms to refer just to the visible
services on the company network, like the internal Web site.
Intranets are the main focus of this book, as we are mainly concerned
with IT services within a company, and we discuss mainly application
architectures that involve the company’s network.

Internet: The largest public WAN in existence, built using the IP proto-
col suite.

Extranet: Connection of private networks of business partners. Some-
times whole intranets are connected, but more often only part of the
private networks.
Extranets are used to share information and services with suppli-
ers and customers. The term comes from “extending one’s intranet
to users outside the company” and is sometimes considered a buzz-
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word without technical meaning by networking professionals. Never-
theless, it can be used to describe the intent of network connections.

With this information, we are now ready to take on high availability
for networks. We will restrict our text to Ethernet and IP communication
for clarity; the principles are the same for other communication protocols.

9.1.1 Network Devices

Network devices, also called active network components, are the systems
that consist of hardware and software and are used to create the network.
They belong to the physical layer in the OSI model. Examples for network
devices are switches, routers, and hubs. Some people also see firewalls as
network devices; we will come back to them in Sect. 9.1.5.

The term switch is heavily misused in the realm of networks. Most
of the time – also in this book – it means layer-2 switches or Ethernet
switches that manage communication of connected systems with different
MAC addresses. Layer-2 switches are not visible on the IP level and have
no routing capabilities.

There are also devices called layer-3 switches or multi-layer switches;
from an abstract functional view, they are a specialized form of router.
Load-balancing clusters, which we learned about in Sect. 6.2, are some-
times called layer-7 switches or content switches, obviously to further
muddy the water and spread confusion of what a switch is.

Ethernet switches are the prevalent form of network bridges. They
form a meshed star topology, where computer systems are connected to
switches, and switches are interconnected to each other. They create LAN
segments that are connected by routers, either to other LAN segments,
or to MANs or WANs. Therefore availability of switches and routers is
important for the availability of the whole network; they are prototypical
single points of failure for a network.

We can increase the reliability and thus the availability of switches
by adding redundancy to these devices internally. Figure 9.1 on the fac-
ing page shows the dependency diagram of the internal components of a
switch or a router, derived from a Cisco explanation. There is the option
to double all internal components and create redundancy by managing
it with the device’s operating system, i.e., with software. Figure 9.2 on
p. 240 shows the resulting dependency diagram.

In practice, this solution is not as robust as one would wish. Having
multiple CPUs and switch fabrics is hard to manage in the software, and
failovers are not always successful. They also fail very seldom, so the risk
of failures in the operating system’s redundancy management is some-
times higher than the risk of failures in those switch components. In any
case, the software remains the single point of failure, even in an otherwise
fully redundant switch.
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Fig. 9.1. Dependency diagram for internal components of a switch or a router

Power supply and cooling systems are different: they fail regularly.
This is caused by dust, dirt, and moving parts (the fans). In addition, in
many areas of the world the provision of electricity is not stable and fluc-
tuations cause damage to power supplies. (Section B.3 gives more advice
on power issues.)

Therefore many network engineers go for redundant power supplies
and cooling fans, but live with the other components being single points
of failure, as illustrated in Fig. 9.3 on p. 241. This is eased by the fact that
we need more redundancy in the system stack anyhow, above the level of
switches, as the next section will show. So, when a switch fails, we expect
higher-level redundancy protections to take care of it and to handle it
within the current LAN segment.

Network devices have almost no payload-based state that they need
to keep. Of course, they have their configuration, but usually they do not
rely on past traffic for their functionality. This gives the opportunity to
realize redundancy not in a device-internal way, but to use two or more
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Fig. 9.2. Dependency diagram for a network device, as redundant as possible.
Redundancy for software and the internal bus does not exist. Redundancy man-
agement is by software if not designated explicitly. Only one dependency is shown
for redundant components

single network devices for redundancy. This option will be explored in the
next few sections.

9.1.2 LAN Segments

A data link layer network or layer-2 network is a LAN segment where com-
munication is not routed. All systems on such a network can reach each
other by physical addressing. Each network interface that is connected
to such a network has a physical network address called a MAC address.
Ethernet packets contain IP packets or parts of them. Technically, a data
link layer network is also called an Ethernet broadcast domain.
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pragmatic redundancy

Traditionally, an Ethernet was a thick coaxial cable (also nicknamed
“yellow cable”) to where all packets from all connected systems were
broadcast. The data link layer filtered out the packets that were ad-
dressed to the specific interface. Hubs (also called multiport repeaters)
were the second wave of connection technology and are still used in small
office/home office (SOHO) environments. Nowadays, Ethernets are cre-
ated by using switches, to achieve higher throughput and better fault
isolation.

Example 1 (Failover cluster network connection). The need for re-
dundancy within a LAN segment is best illustrated with network connec-
tions of failover clusters. Figure 9.4 on the next page illustrates this with
an example: We have two logical nodes L1 and L2, each on their preferred
physical node P1 and P2, with two logical network interfaces. If these
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Fig. 9.4. Failover cluster on two networks

two interfaces were on different LAN segments, a client C on a third LAN
segment would need to communicate via a router R with those servers.

In the case of a failure in the cluster, one logical node would switch
to the other physical node. Let us assume that L2 switches to P1. Then
P1 has both logical network interfaces. But without dynamic routing, the
router would never know that L2 is suddenly activated on a network to
which it does not belong. Since L2 has an IP address of 10.1.0.1, router R
will never ask for L2’s MAC address on the network 10.0.0.0/16 and will
therefore not be able to communicate with L2. The whole failover is not
usable, as C cannot reach L2.

Since we do not want to use dynamic routing (we will come back to that
point in Sect. 9.1.3 on p. 248), both physical nodes of the cluster must be
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on the same LAN segment, as illustrated by Fig. 9.5. It reinforces that a
LAN segment itself must be redundant.
But what is a redundant LAN segment? Well:

• All connections are redundant.
• All switches are redundant (i.e., we duplicate switches, and not switch

components).
• Redundancy management is done by software in switches and in op-

erating systems.

Without further ado, you can have a look at Fig. 9.6 on the following
page, which shows the network connection of a failover cluster on layer 2.
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We have two switches, that have a redundant connection, i.e., two cables.
Interswitch connections are described in more detail in the next section.

Both hosts are connected to either of these switches. From these con-
nections, only one is active at a time; this is called a multipath network
interface card (NIC) configuration.

This seems to be a good place for a reminder: as mentioned in Chap. 6,
when failover clusters are deployed, they need to be configured to check
their connectivity to other devices in the LAN segment. The default gate-
way is always a good candidate, but it is better to check for connectivity
to more than one system. Otherwise, outage of the target system would
cause failover loops.

It is also important that clusters need to send Address Resolution Pro-
tocol (ARP) broadcasts on failover. Most devices update their ARP cache
when they receive a broadcast. Without that broadcast, communication
partners would still have the old MAC address in the ARP cache and
would not reach the logical host on the new node where it has also a new
MAC address.

In the rest of this section, we address:

• Link aggregation for redundant connection of two switches
• Spanning Tree Protocol (STP) to create redundant connections of

many switches.

Link Aggregation

Link aggregation is the management of the redundant connection of two
switches. Without that management, every broadcast packet would result
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in a broadcast storm that would lead to outage of both switches. Let us
have a look at Fig. 9.7, which illustrates the problem:

1. S1 receives a broadcast packet.
2. It forwards it to all attached ports, also to the two ports that connect

it to S2.
3. S2 now receives two broadcast packets, and forwards them to all at-

tached ports, except on the receiving port. Each packet is therefore
forwarded to S1, on the other connection.

4. S1 receives them and forwards them back to S2; an endless loop is
created, all the time sending broadcast packets to all systems that
are connected to either S1 or S2. Within a short time frame, the whole
LAN segment will be unusable.

Link aggregation is the IEEE standard 802.3ad that explains how to
manage such duplicate connections between two systems within one LAN
segment. It is also called trunking and creates link-specific redundancy
by running both connections in parallel. In normal situations, this leads
to doubled nominal bandwidth between both switches, and redundancy
for the outage of one connection.

With link aggregation, the two switches know that the doubled con-
nection should be handled as one logical connection and will not forward
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broadcast packets; endless loops and resulting broadcast storms are pre-
vented.

Building-Block Approach

With link aggregation and two switches, it is possible to follow a sim-
ple network design pattern that we call the building-block approach: use
exactly two switches per LAN segment and connect those segments by
routers. The advantage of the building-block approach is that we do not
need to establish redundancy for more than two switches in a LAN seg-
ment; a problem that we will cover later.

This does not mean that we need two hardware devices per LAN seg-
ment. We have already noted that all LAN information holds as well for
VLANs. Here, VLANs provide a segmentation possibility that helps to
create small STP domains: in VLANs, the STP is not used per VLAN and
involves only those switches that are part of the VLAN. Let us assume
that we have three switches and three VLANs where each of them only
involves two switches – promptly we can follow the design pattern again,
with three hardware devices for three LAN segments, instead of six de-
vices (i.e., two per segment).

Building blocks can be made redundant by duplication and manage-
ment on higher network layers (e.g., routing redundancy, or failover to
different IP addresses by name server changes).

Spanning Tree Protocol

But the reality is usually that we do not design a network from scratch,
but have to cope with existing network structures. And there the building-
block approach is often not used; we encounter more than two switches
per LAN segment.

And when we add a third switch to the picture, we get to another prob-
lem. Since we want to have redundant connections, we want to connect
the third switch to both existing switches, otherwise outage of the middle
switch would split the LAN segment and make it unusable. Figure 9.8 on
the facing page illustrates the problem.

Figure 9.7 showed how broadcast storms occur with two switches that
are double-connected. It is obvious that there would be similar endless
loops for three switches with redundant connections as well. Just as we
needed to manage the redundant connection between two switches, we
also need to manage the redundant connection of more than two switches.

The aim of the management is one principle of data link layer net-
works:

There must always be one and only one path at a time between
two communication partners in a data link layer network. This
path must not contain loops.
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The IEEE 802.1D standard Spanning Tree Protocol (STP) provides this
redundancy management for meshes of switches with redundant connec-
tions. Part of the IEEE 802.1 protocol suite, the 2004 edition covers mul-
tiple variants of it, the most current one is the Rapid STP (RSTP), which
was formulated in 1998.

At the start, it selects a root bridge from the set of attached switches,
using an election method that is guaranteed to succeed. STP selects least-
cost paths to all active network components. All other switch connections
are blocked, i.e., they are made inactive. Figure 9.9 illustrates this for
an (admittedly trivial) example. If a switch connection fails, a blocked
connection is activated to enable communication via other paths.

Recalculation of the minimum spanning tree can need up to 30 s, and
during this time no network traffic will pass through involved ports, i.e.,
the network or the VLAN will be down in this time span for all practical
purposes. The new protocol version RSTP has a faster convergence, but it
can only be used if all the switches deployed in the LAN segment support
it.

� Inherent Problems of the Spanning Tree Protocol

STP works with Bridge Protocol Data Unit (BPDU) packets that must
be sent regularly. The situation can exist where no BPDU packets ar-
rive anymore, but the switch still forwards packets, e.g., owing to CPU
overload or software bugs in the switch’s operating system. With unidi-
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rectional links (especially over fiber optic lines) this happens quite often.
Then STP declares this switch as dead and opens a formerly blocked port.
Bummer, the loop is there.

These loops block all traffic over the switches involved, and rapidly
lead to the blackout of this LAN segment; nobody can transmit any data
over it anymore. Therefore one should utilize only small STP domains.

The building-block approach is effectively the design pattern that
takes this design objective to its logical conclusion and makes the domain
so small that no loops can happen. But even when building blocks are
used, the STP should be left turned on. It does not do harm, and if ever a
third switch gets connected in a potential loop configuration, it will work
as expected. On the other hand, turning off STP will let you detect policy
infringement by addition of a third switch in a dangerous configuration
immediately.

9.1.3 Default Gateway

Now that we know how to construct a highly available network on the
data link layer, it is time to look beyond communication between com-
puter systems on the same LAN segment. Ethernet networks are con-
nected by routers. 3 One of the most basic network configurations on any
server or desktop is the default gateway. This is a router that takes all
traffic that goes beyond one’s LAN segment and delivers it.

3 Sometimes devices called “layer-3 switches” are used, but they are in fact just
routers that are specialized for Ethernet and IP traffic.
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Our task will be to provide high availability for that default gateway.
Before we see how that is done, we are going to have a look at the context
of this goal.

Default gateways are especially important because good network de-
sign is often seen as avoiding the need for static or dynamic routing on
computer systems. Routing is the domain of special network components,
be they called routers or layer-3 switches. Servers and desktops should
not be concerned with routing.

That said, the default gateway is a single point of failure at first sight.
When it has an outage, any communication outside the LAN segment is
not possible anymore. Therefore we have reached our next task: making
default gateways highly available.

We start by taking several routers. Each router gets a connection to
a different switch. A router should not have multiple connections into a
LAN segment, otherwise it would not know the path – and relying on the
STP is dangerous, as explained before. Of course, each router connection
has its own IP address.

These IP addresses must not be used at servers or clients. Several
operating systems allow multiple IP addresses to be used as default gate-
ways. But this ability is used for load balancing, initial selection during
boot time, and other intentions. It cannot be used to achieve redundancy.
This is not supported by operating systems and does not work.

� Virtual Router Redundancy Protocol

The canonical way to achieve redundancy of the default gateway is to use
a virtual Ethernet interface, complete with a MAC and an IP address. The
IP address is used as the default gateway in server and desktop configu-
rations. In the case of a router outage, another router takes over the vir-
tual interface and now receives the traffic that is destined for that MAC
address. Figure 9.10 on the next page illustrates such a virtual interface.

Management of redundancy by a virtual Ethernet interface is done by
the Virtual Router Redundancy Protocol (VRRP). Cisco devices often use
the older proprietary Hot-Standby Router Protocol (HSRP), which has the
same functionality. VRRP realizes a hot-standby solution. One router is
the master and has the virtual interface activated. The decision of which
router is the master is part of VRRP. Routers exchange heartbeats for
that, via the switches. That is also needed to determine if a switch is
down; then VRRP interface must be activated on the other router.

VRRP enhances the simple virtual IP interfaces that we met already
with failover clusters on the operating system level: it adds virtual MAC
addresses and makes switching more robust since no ARP caches must be
invalidated anymore. For the case of virtual IP interfaces, an ARP broad-
cast is sent when failover happens, and one relies on the implementation
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of most ARP caches to invalidate a previous entry on reception of a new
one. VRRP removes this dependency on implementation details.

In fact, VRRP could be used for failover clusters as well, as most server
operating systems support VRRP nowadays. That simple IP interfaces
are still used can be for several reasons, and we can only speculate on
those – most probably “it works, why change it,” which is altogether rea-
sonable.

Availability of other components can be an input for the master selec-
tion. Often two routers are connected with vastly different bandwidth
properties, e.g., a fast leased line and an ISDN dialup as shown in
Fig. 9.11 on the facing page. In that situation, the slower connection shall
be a backup and shall only be used in the case of failures of the leased
line.

The slower line is colloquially known as the standby track connection,
since Cisco’s IOS uses the command standby track to configure it. Here
the VRRP master selection process takes the standby configuration into
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account and uses preferably the router with the primary outbound con-
nection.

� Switch Optimization Is Superfluous

There might be the temptation to coordinate the computer system’s mul-
tipath NIC configuration with the active VRRP link. Let us have a look
again at Fig. 9.10 on the preceding page.

When R1 has been selected as the VRRP master, one could argue that
the multipath NIC configuration should choose eth0 as the active network
path for the host. Then exterior packets from and to the host would just
pass switch S1.

Even if such coupling of the configuration is theoretically possible, one
can only advise that any thought about it be discarded. Such a configu-
ration adds lots and lots of complexity to the configuration and therefore
increases the risk of failures, just for the gain to save on (extremely fast)
Ethernet frame forwarding by a switch. Robustness is one of our impor-
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tant design objectives, and that would be violated by such a complex con-
figuration.

Optimization of switch usage is not needed: current switch technology
is fast enough.

� Passive Dynamic Routing

Using VRRP (or HSRP from Cisco) to realize high availability for default
gateways is considered best practice. Still, in some places we find another
implementation method, called passive dynamic routing.

The program routed on Unix servers or Windows Server Multi-Protocol
Routing provide the ability for servers to update their routing tables with
dynamic routing protocols. These products support the Routing Informa-
tion Protocol (RIP), which is supposed to adapt the system configuration
to changes of network connectivity.

With these services activated, the two redundant routers will an-
nounce their activity and will also broadcast routing information. This
information can be used by servers which will learn about the routing
availability and can select their default gateway dynamically.

The servers should be configured that they do not announce routes
themselves. This is known as passive operation and reduces the likelihood
that misconfiguration of servers will influence router configuration.

There are two problems with this approach:

1. The convergence time (notification of outage and announcement of an
alternative default gateway) needs up to 3 min. That is not acceptable
for some high-availability requirements.

2. Desktops usually do not have RIP support. While VRRP provides high
availability for desktop connectivity as well, passive dynamic routing
is not available for them. This means that a router outage can sepa-
rate a large group of desktops from the server and make the IT service
unavailable for them.

Alternatives for RIP are dynamic routing protocols like OSPF, EIGRP,
or IS-IS, which we will meet in the next section. They are also available
for servers and converge faster, but are more complex to configure. Nev-
ertheless, the desktop and robustness problems remain.

In summary, RIP or its alternatives are not intended to provide high
availability for default gateways, but VRRP is. Misusing a protocol that is
tailored for the need of router configuration for the server default gateway
configuration is possible, but not recommended. It is better to stay with
high-availability solutions that were designed to be so.

9.1.4 Routing in LANs and WANs

The network layer is the connection of many LAN segments into a CAN,
and/or the connection to WANs. The network layer is responsible for re-
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alizing end-to-end communication between systems in such a network,
whereas the data link layer only provides communication in one LAN
segment. This is realized by routers or layer-3 switches. (We will handle
the latter like routers – what they are, logically.)

For that the network layer introduces logical addressing by IP ad-
dresses. An IP address is called local if it is connected to the same Eth-
ernet, and remote if it is not. Each connected system has a routing table
that tells if an IP address is local, i.e., if it is connected to the same Ether-
net, or if it is remote. For local IP addresses, ARP is used to determine the
associated MAC address and then the information can be sent directly on
the data link layer. For remote IP addresses, the routing table has an
associated gateway’s IP address that must be reachable. (Usually, that
gateway has a local IP address as well.) The packet is then sent to the
gateway that will determine a communication path for eventual delivery.

Section 9.1.3 on p. 248 explained already that computer systems
should avoid large routing tables. It is best if they have just the knowl-
edge of which IP addresses are local and the default gateway. That way,
all routing configuration is delegated to the routing infrastructure, where
it belongs. This is also the case that we assume in the rest of this section.

From experience, we can say that the network layer with the IP pro-
tocol suite is a mature technology that provides very good availability if
properly set up. Systems can run for years without any downtime. On the
other hand, if there is an outage, the available mechanisms – described
later – do not have quick remedies. A network outage usually takes sev-
eral minutes longer to repair and most often leads to a major outage.

That said, let us see next how we can provide a highly available infra-
structure within a LAN, then we will address WANs.

Routing in LANs

As in the data link layer, we also need redundancy in the network layer. It
is not acceptable to have a router outage cause disruption of IT services
for many end users. Therefore all communication paths between LAN
segments must be redundant; there must always be (at least) two ways
to send a message from one computer system to another.

Network design now has the task to select routers, connections, and
configuration in a way that:

1. Routers have multiple paths to reach a communication destination.
2. They are capable choosing an appropriate path from the multitude of

available paths.

To achieve these goals, router configuration enables a dynamic rout-
ing protocol (also called Interior Gateway Protocol, IGP) that determines
connectivity of other routers and allows the “best communication path” to
a destination to be determined. Several such protocols exist:
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Routing Information Protocol (RIP): The oldest method for routing
information exchange. It is easy to configure and light on resources –
but these are the only two advantages that it has. It does not scale
well and needs a notoriously long time to converge in the case of
changes. It is better to use it only in very rare circumstances.
We have met RIP already as a possible method to achieve high avail-
ability for default gateways, where it was also not recommended.
Tongue-in-cheek, it is best to take the other meaning of that acronym
and let the protocol rest in peace.

Open Shortest Path First (OSPF): The modern state-of-the-art rout-
ing protocol, tuned for IPv4 traffic. Bad link detection and rerouting
is resolved in 45 s.
OSPF is very complex to handle. The risk of failures in network design
is quite high; it is easy to create single points of failure by logical (mis-
)design, even if physical redundancy is available.
This protocol is the most widely used IGP by Internet service providers
(ISPs), but this is slowly changing to IS-IS. It is also partly used in
company networks, though there EIGRP is also prevalent.

Enhanced Interior Gateway Routing Protocol (EIGRP): A propri-
etary protocol by Cisco that combines simplicity of protocols like RIP
with the quick convergence time of protocols like OSPF or IS-IS.
This protocol is in wide use in company environments where the
whole router environment is based on Cisco devices. The chances are
good of finding skilled personal who have experience either in EIGRP
or in OSPF, or in both.

Intermediate System to Intermediate System (IS-IS): A modern
routing protocol that has a huge range of tuning options. With them,
performance, efficiency, and availability can be maximized. It is also
more flexible than OSPF, e.g., IPv6 support was easily added.
IS-IS is used predominantly by large ISPs. It is less well known, and
documentation in the popular press is scarce. This might change if
IPv6 wins more ground though. It is also more difficult to find staff
with knowledge of IS-IS than of OSPF or EIGRP.

All of these routing protocols can be used to realize highly available
routing infrastructures within one CAN. They are not sufficient to realize
routing for several CANs, as they only provide dynamic routing within
an administrative domain – for practical purposes this means outside a
WAN.

All these protocols have the potential for error situations: they are not
bullet-proof. Recomputation of routing information is quite computation-
ally intensive. If a system goes down, all neighbors need to recompute
their routing information. If it comes up again shortly afterwards, an-
other recomputation is in order. This can lead to an overload situation
where a router is only engaged in routing topology computation and is
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considered down itself by its neighbors, leading to recomputations there.
After it has finished the computation it is seen to be up, leading again to
recomputation at many neighbors – you get the picture. This is a known
phenomenon that is called routing meltdown.

In summary, routing in LANs is a very mature technology and can be
configured to realize highly available corporate networks. Nevertheless,
failure potentials remain and major outages can happen owing to network
errors.

WAN for Corporate Networks

Many companies have several sites and need WAN technology to connect
these sites.

WANs are a notorious hard and complex area when it comes to high
availability. With current technology:

• WANs are very stable.
• Availability is very good, but you have to shop around to find a

provider that realizes SLAs in the 99.99 or 99.999% regions.
• Small glitches can be protected against.
• Medium outages can take a WAN connection down for half a day.
• Large failures can happen every few years, and may lead to major

outages up of to 1 week; in the case of physical disasters, even longer.

But the main problem with high-availability requirements for WANs
is that they are almost impossible to guarantee. The question remains
open if these multiple connections are really independent or if they share
some single point of failure.

For some it comes as surprise that even network service providers
that rent leased lines often do not have enough information to answer
this question. Even if the line is a real physical cable, its physical path is
often not known for longer distances. Then it might very well be that it
shares space in the earth or crosses a river at the same place as the other,
supposedly independent cable.

Especially the last mile, i.e., the distance between the last switch site
and the company’s ground, is often a single point of failure – there are
only so many places where one is allowed to put cables in or over public
ground. The proverbial digger that destroys cable in the ground is still one
of the largest dangers for highly available Internet connections – such an
accident will happen very rarely, but if it happens it might lead to outages
that need days or even weeks to repair.

Another problem for high-availability WAN design is the ongoing vir-
tualization of our network backbones. Layer is added on layer, and dy-
namic resource allocation results in the impossibility of naming the real
physical network infrastructure that is used potentially. This makes anal-
ysis and risk assessment impossible to carry out. Sad to say, service level
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agreements (SLAs) with network service providers do not help much
either. There are many cases known where the service provider sim-
ply agreed that they did not meet the SLAs and they paid the contract
penalty. But this will not help our business if we depend on that WAN
connection; such contract penalties are usually not high enough to cover
all our losses.

Redundancy in corporate WANs is created with the same methods as
for routing in LANs. Namely, an IGP like OSPF, EIGRP, or IS-IS, more
seldom also RIP, is used. These protocols are created to handle WAN con-
nections.

WAN Connections to The Internet

Nowadays many business processes depend on a working Internet con-
nection; such connectivities have become mission-critical for all except
very small businesses. Internet connections are obtained from ISPs, who
will also give out public IP addresses that are routed to our network
perimeter.

Getting a good ISP is mainly a trust issue. Before we mentioned that
we have to shop around to get SLAs above 99.99% (measured yearly).
That is not to say that there are no companies that do not sell you con-
tracts with such SLAs – there are even providers who will sell you a con-
tract with an SLA of 100%, which clearly cannot be promised by anybody.
These kinds of contracts have factored in the fact that the providers will
pay penalties for nonperformance in situations when they do not achieve
their contractual obligations. But we are not interested in contract penal-
ties, we are interested in availability!

Therefore, many companies want to get two or more independent In-
ternet connections and realize their redundancy themselves. First of all,
we need to mention that there is a big risk involved that the connections
are not as independent as they seem; we mentioned that earlier. But let
us first describe summarily how such a redundant connection is made.

Redundancy for outgoing traffic is easy to realize. The outgoing router
is usually our default gateway; we have explained redundancy for default
gateways via VRRP already in Sect. 9.1.3 on p. 248. In fact, it is more
common that the network perimeter is protected by firewalls, but that is
not a big difference as you will see in Sect. 9.1.5.

Redundancy for incoming traffic is the problem. There are two ways
to realize that:

1. Almost all incoming traffic is (or can be) based on Internet fully qual-
ified domain names, i.e., the communication partner looks up the IP
address of our company in the DNS. In the case of an outage, we can
publish other IP addresses, and then a different communication path
will be chosen.
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This approach must be carefully implemented. Normally, DNS infor-
mation is heavily cached. We have to reduce the time to live (TTL)
value of the DNS records to a few minutes, to prevent caching and to
give the opportunity to change addresses. This also implies that the
DNS servers must be located somewhere outside our own corporate
network, e.g., at the provider’s location. Automated update possibil-
ities for the DNS configuration of those outsourced servers must be
available that are also functional in the face of an Internet connection
outage.

2. The other approach is that we put ourselves in the role of a small ISP,
get our own IP address allocation, and make several contracts as a
downstream ISP with other providers.
The IP protocol suite is designed to “route around problems” in WAN
connectivity. On the Internet, the Border Gateway Protocol (BGP) is
used to achieve proper routing between administrative domains, i.e.,
between different companies or institutions. In particular, BGP is
mainly used for management of routing between providers; thus, it
will also be used to manage routing for the redundant “upstream con-
nections.”

Direct WAN Connections to Other Companies

Colloquially called Extranet connections, it is often the case that corpo-
rate networks of business partners are linked via a WAN connection.

Such connections are sometimes dedicated lines, typically when a
smaller business is tightly integrated into the business processes of a
larger business. Such kinds of connections are especially used in manu-
facturing environments for suppliers or dealers.

For most other connections with business partners, site-to-site VPNs
over the Internet are used nowadays. They have a better cost-to-function-
ality ratio for the restricted traffic they have to shoulder. Since they are
made over the Internet, a redundant Internet connection is mandatory,
as explained before. In addition, the VPN servers must be made redun-
dant as well on both sides; good clustering capabilities are a feature of
enterprise-class VPN solutions.

For less capable (but also much cheaper) solutions we will utilize
failover clusters and will settle with the abortion of VPN connections from
time to time. This is not as bad as it sounds at first; such aborts are very
seldom in practice and the IP protocols beneath support reconnects trans-
parently.

In any case, either with dedicated lines or with VPN connections, Ex-
tranet links are part of the corporate network’s perimeter and are there-
fore secured by firewalls. In addition, it is very probable that both com-
panies use private IP addresses in their CANs and we have to utilize
network address translation (NAT) for the connection. The next section
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will address the possibilities to achieve high availability while using these
technologies as well.

9.1.5 Firewalls and Network Address Translation

Firewalls are devices to increase security at the network perimeter. They
are utilized at the connection to the Internet, in the Extranet to business
partners, and for special departments in the Intranet that need higher
protection and separation. They control access to and from the services
on the enclosed network.

NAT is a method to map internal private IP addresses from and to
external public IP addresses. It is utilized when two networks are con-
nected that use incompatible addressing schemes. Most often it is de-
ployed for connection of company networks to the Internet: company net-
works often utilize IP address ranges that are not used on the Internet
(e.g., 10.0.0.0/8) and that must be mapped to public Internet addresses
for every Internet connection. Such mapping also provides increased se-
curity.

Firewalls often provide NAT as one feature. They are deployed at the
network perimeter and analyze IP packets anyhow and NAT is solely
needed there; thus, they are the obvious place to realize it. Furthermore,
both technologies have in common that they need information from and
about the IP traffic to realize their functionality. This deserves more de-
tailed explanation.

Firewalls

Firewalls come in three different flavors:

1. Packet filters are the most basic category of firewalls. They feature
an access control list (ACL) that tells which IP connections are allowed
to and from the network. That ACL lists source and destination IP
packet characteristics and an associated action like accept, reject, or
drop.
The IP packet characteristics are mainly IP addresses, protocol type
(e.g., TCP or UDP), and port numbers (i.e., service designations for the
destination packet), but also include IP options and other information.
Many packet filters have a very limited ability of connection tracking
that allows them to identify TCP packets that belong to a specific TCP
session, or they have heuristics to associate UDP response packets
with UDP requests.4
Packet filters offer the least security and the best performance. They
are the only firewall technology that can operate almost at wirespeed.

4 UDP has no session concept, so it is not possible in general without knowledge
of the application protocol.
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Nowadays, packet filters are mainly used in appliances for the SOHO
and private markets. Enterprises use them only in situations where
performance is of utmost importance and where stateful inspection
firewalls are not fast enough.

2. Stateful inspection is the current mainstream of firewalls. In prin-
cipal these firewalls work like packet filters, but also follow the com-
munication’s content. They have knowledge about application-level IP
protocols and track connections if requests and responses stay within
the constraints of the respective protocol, i.e., they observe communi-
cation between client and server. They will abort the connection if a
mismatch is detected.
While content-level checks are potentially possible with stateful in-
spection technology, they are seldom implemented with that category
of firewall. For most products, that would be difficult to implement
anyhow.
Stateful inspection firewalls are fast enough for typical WAN connec-
tion speeds.5 Owing to their protocol checks they have also reasonable
security, and thus provide a reasonable trade-off between security and
performance.

3. Application gateways or proxies utilize a different concept. They
intercept the communication on the application level – the client talks
to them instead of to the server; they submit the sanitized requests
to the server themselves. They handle all protocol functionality and
allow checks to be realized on the content level.
Proxies can realize both transparent and nontransparent firewalling,
i.e., the client might see that it is talking to the firewall and will never
know about the server; or the client thinks it is talking to the server
but the communication is intercepted and captured.
Application gateways are the most secure firewall technology, but also
the slowest one; therefore, they are seldom deployed, and most of the
time are used for email and for high-security installations. It remains
to be seen if that will change owing to the influx of Web services and
the associated increased need to check communication content.

All firewall categories have one thing in common: they have an inter-
nal state that depends on past traffic, and they work only if they can see
all traffic from a communication. For application gateways and stateful
inspection firewalls this is clear: they cannot check content and/or pro-
tocol conformance without access to the communication’s state and past.
But even for packet filters this is needed in practice. Most packet filter
ACLs rely on connection tracking to express rules like “accept all TCP
packets of established sessions” or “accept UDP packets that are with
high probability DNS responses.”

5 Sometimes they are said to work at wirespeed, but experience shows that they
do so only in packet-filtering-only mode, without protocol checks.
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This means that firewalls are inherently state-based – luckily they
do not have a persistent state. We meet the usual gotchas: redundant
devices can be used to recover overall functionality easily, but might abort
sessions.

Packet Rewriting by NAT

IP addresses are a scarce resource. Many IP address blocks are in use al-
ready and there are very few companies who can use public Internet ad-
dresses on all their computers. Instead, companies use internal addresses
on their corporate network that must not be used outside.

To do this properly, a set of address ranges has been set aside; they are
called the private IP addresses: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16,
and 169.254.0.0/16. These addresses will not be allocated to any company
and institution; they are not valid on the Internet and must not be routed
there.

When a computer system on the corporate network wants to commu-
nicate with a system on the Internet, or with a business partner’s system
on the Extranet, its IP address must not appear in the packets. For ex-
ample, when the local system has an IP address of 10.1.2.3, that address
must not be sent to the Internet. The receiving system would not know
how to return the response, as this is an invalid Internet address. Simi-
larly, if an outside system wants to send a request to an internal system,
it cannot use the internal address. For that communication, a valid public
Internet address must exist.

NAT rewrites packets to map private IP addresses to public ones and
vice versa, i.e., in outgoing IP packets, private addresses like 10.1.2.3
are substituted with public addresses like 194.128.225.190. When the re-
sponse packet to 194.128.225.190 arrives, the address is translated back
to 10.1.2.3. Similarly, an incoming request to 66.54.38.9 might be trans-
lated to the new destination address 10.20.5.3, and response packets are
rewritten too. Figure 9.12 on the facing page illustrates that behavior.

Although NAT is widely deployed, it also has its share of problems.
In particular, there exist several application protocols that need end-to-
end connectivity and knowledge of true source and destination addresses.
These kinds of protocols (notably IPsec to create VPN and SIP to estab-
lish Voice-over-Internet Protocol, VoIP, connections) do not work without
adaptations in a NAT environment.

On the other hand, using private IP addresses internally that are not
routed on the Internet also brings advantages in terms of security. This
means that only systems where we set up explicit incoming NAT map-
pings can be connected from the Internet – in the unsecure and hostile
Internet environment of today, that is an advantage that should not be
underestimated.
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Fig. 9.12. Principles of network address translation (NAT)

� NAT Categories

Important for our high availability design is the question of how the
mode of operation influences implementation of redundancy. There are
three different categories of NAT that all have consequences for our high-
availability setup:

1. Static NAT is the 1 : 1 mapping of internal and external addresses.
Every NATed internal address is always replaced by the same ex-
ternal address. The port numbers of TCP or UDP connections are
not changed. Static NAT supports both outgoing and incoming traf-
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fic. This method is sometimes used for a limited number of computer
systems in demilitarized zones.
Static NAT needs no knowledge of traffic history. It does not keep any
state information about the connection, but simply rewrites addresses
in every packet that needs it. Therefore, from a high-availability view,
it is the easiest NAT technology when it comes to providing redun-
dancy. For static NAT, the same redundancy methods as with routers
can be used.

2. Dynamic NAT is the n : m mapping of internal and external ad-
dresses and can only be used for outgoing connections. There is a pool
of available external addresses. When an outgoing connection is ini-
tiated, an unused address from that pool is allocated and used for
address rewriting of that connection. Port numbers of TCP or UDP
connections are not changed.6 This method is only available in a few
firewall products and is not widely used.
Dynamic NAT has a state where it keeps knowledge of current ad-
dress mappings. Initiation and termination of sessions change that
mapping. If this state information is not replicated, sessions will be
aborted in the case of failure of the NAT device (i.e., the firewall or
the router).

3. Overloading NAT is the n : 1 mapping of internal addresses to
one external address and can only be used for outgoing addresses.
This method is also called port address translation (PAT, mainly in
Cisco-dominated environments), or network address port translation
(NAPT), hiding NAT (in Checkpoint firewalls), or IP masquerading
(mainly in open-source firewalls). The names PAT and NAPT refer to
the need to rewrite port numbers in connections as well – the ports
are used to identify the internal address that must be used for re-
sponse packets. Overloading NAT is the most often used NAT method
for Internet connections.
Like dynamic NAT, overloading NAT needs to keep track of estab-
lished connections. The only difference is that it maps internal ad-
dresses to source port numbers and vice versa. As well, overloading
NAT has the danger of session aborts in the case of device failures.

As we can see, both firewalls and other NAT devices keep state in-
formation about past traffic and tracking sessions. There is no persistent
state though – if we can accept session aborts, a device restart or a re-
placement device will enable the functionality as before. Since all NAT
problems also exist for firewalls and most NAT-enabling devices are fire-
walls anyhow, we will use just “firewall” in the following to denote both
types of systems.

6 Dynamic NAT needs a stateful inspection firewall or an application gateway
to support UDP communication. Otherwise it does not know about the end of
sessions.
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Fig. 9.13. Asymmetric routing and firewalls

Problems with Routing

Firewalls always need to see the complete traffic of any connection. This
is obvious for most NATed traffic, stateful inspection firewalls, or appli-
cation gateways. But also packet filters usually need to look at the whole
traffic owing to their connection tracking.

When a network design includes asymmetric routing, firewalls will not
work anymore. Asymmetric routing is the situation where the communi-
cation path from system A to system B is different from that for the traffic
from system B to system A, as illustrated in Fig. 9.13.

The two firewalls F1 and F2 each see only half of the traffic and cannot
track any connection; therefore no response packet will ever be returned
to system B – F2 will block it as no session initiation has been seen.

This also means that any high-availability solution cannot just place
two firewalls in the net and let them both work without regard to rout-
ing. Their configuration and also their operations must be tuned to work
together. If dynamic routing protocols are used, it must be assured that
no asymmetric routing situation occurs, otherwise the service will not be
available anymore.
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Firewall Clusters

First of all, firewalls can have internal redundancies for hardware com-
ponents. This is similar to small servers and routers: if the firewall has a
disk, disk redundancy is the most important. After that, fans and power
supplies fail most often and redundancy should be added for them. Last,
network cards can be made redundant by link aggregation or multipath
configurations. More internal redundancy is questionable and often re-
duces robustness beyond the gains that it brings.

Therefore we want to have redundancy on the firewall device level
too. Two or more firewalls are used to provide redundant and secured
communication paths between computer systems, just like routers are
made redundant as well.

Most often, firewalls also deliver functionality that is normally the
realm of routers. The redundancy method from routers, VRRP, that we
learned about in Sect. 9.1.3, is thus supported in many firewall products.
This leads to installations with a hot-standby system, where one firewall
is active and the other is just running idly along until an outage happens
and the backup firewall takes over.

As so often, most firewall clusters lose sessions during takeover. Since
they are stateful and state information is not persistent, the new cluster
node will not have knowledge of sessions and will abort them, i.e., it will
drop incoming packets. The clients will have to reestablish connections
after a failover.

Some high-end firewall products also provide load-sharing function-
ality for clusters and avoid the session abort at failures. There multiple
firewalls are active at the same time. Session states are shared between
the nodes of such a firewall cluster by multicast messages, typically over
a separate redundant network. So all nodes of that cluster have the same
state – packets of a session will be processed by an arbitrarily chosen node
anyhow, and in the case of an outage there is simply one cluster node less
that will process packets, without loss of functionality.

9.1.6 Network Design for Disaster Recovery

The network design is usually not something a disaster-recovery project
can decide alone; it must be coordinated with the networking department.
There are three realistic design patterns that you can utilize.

Primary and Backup Sites Are in One LAN Segment

If the backup site is in the same town, it is often possible to have a single
switched network over both the primary and the backup sites. Between
the primary and the backup servers there are no routers; they are in the
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same segment. In modern network setups, VLANs are used to structure
the network further.

In that case, the IP addresses of the primary server can be moved to
the backup server in the case of disaster. Of course, such a switch, i.e.,
turning on the IP service addresses on the backup server, will part of
preparation for disaster recovery. For the clients, there will be no changes
in configuration; they will work almost immediately. (Their ARP caches
might need to be updated first, but the switch to the backup server needs
longer than ARP cache lifetimes anyhow.)

There is a drawback that we have to take into account: the service
addresses on primary and backup systems must not be activated at the
same time. This would immediately lead to IP address conflicts and nei-
ther the primary nor the backup system would be functional afterwards.
In fact, this is a failure scenario that blocks both systems and is therefore
a single point of failure in this design approach.

Separate LANs for Backup and Primary Sites, Move Addresses

The primary and backup sites might be in different LANs, where routers
connect them. This might be one router, or several ones; there might be
VPNs between the primary and backup sites. Such site-to-site VPNs are
typical network infrastructure setups if primary and backup sites are
wider apart and if no exclusively leased lines exist between backup and
remote sites – they are the most cost-effective way to integrate several
sites into one corporate network. Other reasons for different LAN seg-
ments are the avoidance of complete network outages by switch loops, as
explained in Sect. 9.1.2. By separating primary and backup sites into (at
least) two LAN segments, we confine any network outage to the respec-
tive site and can still work at the other one.

In the disaster case, we can move the IP service addresses from the
primary to the backup site when we change the router configuration. New
host routings and proxy ARPs need to be created for such a setup, but that
is an easy configuration and the change can be done quickly.

This approach also has the advantage that we can activate the IP ser-
vice addresses on the backup system without causing the primary system
to fail – as long as there are no clients at the backup site that want to use
the primary system.

The main disadvantage of that approach is the need for reconfigura-
tions by the network group in a disaster case. This introduces another
organizational dependency that may complicate recovery in the disaster
case.

We might be tempted to change routing automatically by OSPF or any
other dynamic routing scheme that is available on server systems via
routing daemons. We advise against such configurations, as experience
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has shown that they are very error prone and that one does not want to
let server configurations influence network routing.

Separate LANs for Backup and Primary Sites, Different
Addresses

When the primary and backup sites are in different LAN segments, the
traditional approach for the disaster case is to change the IP service ad-
dresses and let the clients access the service with the new addresses.

This assumes that a network name service – most probably DNS – is
used. If any client has the service system name to IP address mapping
hardcoded, or uses the IP addresses directly, this approach will not work.

Changing DNS addresses has its peculiarities as well. In a typical
DNS infrastructure, we have a master server, several secondary serv-
ers, and maybe some caching servers. Changes will be propagated from
master to secondary servers almost immediately, but caching servers will
catch up only after the respective DNS entry has expired. Most clients
also cache DNS entries locally and do not request them anew for every IP
connection. Many applications also cache DNS entries (aka host lookups).
The expiration of DNS entries is controlled by an attribute of the DNS en-
try, the time-to-live (TTL) duration.

If you use that approach, the DNS guys (most probably also from the
network department) must agree to set the TTL of the primary service
names short enough that they expire from all caches during the time that
is needed for a switch to the backup system. When the backup system is
up and running, caching servers and clients will have requested the new
IP addresses in the meantime – if it was changed quickly enough! – and
will use the new system. Shorter TTLs for DNS entries also mean more
DNS traffic on your LAN, though this should be negligible for current
enterprise-class intranets.

Of course, this approach introduces the organizational dependency
that we need a DNS configuration change quite early after a disaster has
been declared. Otherwise, the change will not have propagated by the
time the backup system is ready and the clients will not use the system.

You should also be aware that there have been problems in the cor-
rect implementation of DNS expiration in caching servers and clients in
the past. There are still errors in applications that simply cache the host
name lookup result – the TTL is not part of that lookup, so it cannot be
cached. While we cannot name deficient products here, it is well known
that after DNS changes in the Internet, the old site will be accessed long
after the DNS entries have expired, owing to erroneous caching behav-
ior. Such error conditions might occur on your Intranet installation as
well. As said, caching in the operating system and DNS is not error-prone.
Other intermediate servers or applications are usually the culprit.
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Therefore you need to test this design approach seriously before you
engage in it – or you must be able to restart all intermediate servers and
clients, to be able to get rid of cached DNS data.

9.2 Infrastructure Services

It is hard to define exactly what infrastructure services are. For the pur-
pose of this book, we use that term to mean services that must be avail-
able to use an application, but that are not part of that application. That
meaning is not precise, since there will be always “gray areas” where it
is a value judgment if they belong to the application or not. In fact, quite
often that decision is not a technical one, but is made for organizational
and project reasons.

Nevertheless, we can name a set of services that are commonly consid-
ered to be infrastructure services. This list is not exhaustive and serves
as guidance. Most of those services are actually used by applications and
are not end-user services. The exceptions to that are the authentication
services that are used for user login.

DHCP service Network boot service
DNS Windows name service
LDAP directory service Active Directory
Kerberos authentication service Network Information Service (NIS)
Time service Log service
Print service Email service

In the rest of this section, we will look at a selection of these services.
They have been chosen to provide prototypical solution patterns that can
be utilized for other services as well:

• DHCP servers are used for basic desktop configuration in most com-
panies; they are covered in Sect. 9.2.1.

• DNS servers are essential for any network usage, both on the Inter-
net and on intranets and are presented in Sect. 9.2.2.

• Directory servers and variants thereof are handled in Sect. 9.2.3;
many of them are mainly used for user login.

Please note that network file services are absent from the list and
are handled in Sect. 5.2.3, since, for this book, they are more related to
storage than to infrastructure services.

9.2.1 Dynamic Host Configuration Protocol (DHCP)

Desktop systems in companies are of less use if they are not connected to
the company’s network. Without that, no network shares can be accessed,
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almost no applications work, no email or Internet access is possible, and
no backup is made. For that, desktop systems need some specific infor-
mation bits: first of all their network configuration, but also host name,
domain name, name servers, directory servers, log server, print servers,
time servers, and others.

For most companies, it is of interest that their desktop systems are
centrally configured. Having the system configuration of all desktops at
one central place has the big advantage that it can be changed as needed;
one does not need to (physically or virtually) walk around and maintain
each desktop manually. Instead, all desktop configuration data will be
fetched by the systems from that central information base.

Most of the time, such configuration is needed during system boot. But
sometimes desktop systems are very long running, login times may be up
to months, then the configuration might need to be refreshed to reflect
changes in the central configuration information. There is also the situa-
tion that a notebook is attached to a company network anew and that it
should now be reconfigured to fit into the company’s configuration. Tech-
nology for system configuration from a central information store must
fulfill these use cases as well.

DHCP is an Internet standard protocol that supplies such a method.
A system broadcasts a DHCP request on the network and a DHCP server
replies with the system’s configuration. The standard also spells out
what are possible configuration options and the structure of the reply;
it thus restricts the potential variations of configuration information.7
The DHCP client interprets the reply and sets or alters its configuration
accordingly.

The configuration can be both dynamically allocated from a pool of
available resources and statically assigned. As an example, a desktop ei-
ther has a fixed IP address or it can be dynamically assigned one from
a pool of available IP addresses. For the static assignment, the desktop’s
MAC address is used to look up the configuration data in the central infor-
mation store. Dynamic resource allocation implies that the DHCP server
has to keep track of assignments and has a persistent state.

The ability to dynamically assign IP addresses is also used by many
installations and allows for easy integration of laptops and other mobile
systems. When dynamic IP address allocation is used, the DHCP service
is usually coupled with DNS – then an address allocation also updates the
DNS database dynamically. This is not only relevant for name lookups,
but also for reverse lookup, the association of IP addresses with host
names. Some servers demand that their clients resolve their IP addresses
properly; coupling DHCP with dynamic DNS updates is one possibility to
realize that.
7 That said, most implementations use only a few of the many configuration pos-

sibilities, most of them network-related.
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In contrast, DHCP is seldom used for server systems. Server systems
usually demand static configuration and are manually configured and
maintained anyhow. Then the advantage of a central configuration server
does not play out; on the contrary, it is frustrating to have the server sys-
tem configuration suddenly at two places, one part local and one part on
the DHCP server. Nevertheless the network configuration is sometimes
delivered by DHCP – this is usually the case if the network is managed by
a particular department and that department wants to control network
configuration itself and does not want to put that in the hands of system
administrators.

With the same line of argument, DHCP should not be used at all for
highly available servers. For one, it adds another dependency to another
system that we should avoid for the sake of simplicity and robustness.
Second, it is not possible to do high-availability configurations like mul-
tipath NICs or other redundancy options (e.g., link aggregation) properly
with DHCP.

DHCP was selected as an infrastructure service example because it
is a service where its failure might render all clients unusable. Such a
service outage can have disastrous consequences and can turn a server
failure into a major outage of a whole site. Therefore one is well advised
to provide a highly available DHCP installation.

There exist many products that support DHCP. These products have
very different implementations and there is no single high-availability
approach that works for all of them. The two most important products
are Internet Systems Consortium’s (ISC) DHCPD and Microsoft’s Active
Directory. High availability for the latter is described on p. 281ff.

Case Study: High Availability for ISC’s DHCPD

On Unix systems, the most often used DHCP server is DHCPD from ISC.
It is open-source software that is widely used to provide DHCP service in
companies.

It allows static and dynamic allocation of IP addresses and also com-
puter host names. Pooling of configurations is also well supported, which
allows different configuration policies for different classes of desktops, or
for different departments, to be established.

The DHCPD configuration is traditionally stored in files. Current re-
leases also allow the configuration to be stored on an LDAP directory
server or on database back-end severs. There are several reasons why we
may want to go down the LDAP road, not the least being that we can
use LDAP as a back-end database for other services as well, in particular
for DNS and for authentication (logging in). This allows the handling of
all kinds of configuration information – not only system configuration –
at one central place. Of course, then the LDAP infrastructure must be
highly available as well, in addition to the DHCP service.
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DHCPD has state information, namely, the database of dynamically
allocated IP addresses. This is called the lease database and is stored in a
file. To make dynamic DNS work, it is expected that this database must
be preserved in the case of a server outage.

High availability for DHCP should be supported by accompanying
client configurations. It is not sufficient to make our servers highly avail-
able, the objective is an end-to-end view of high availability for this ser-
vice.

A well-known issue is default DHCP client configurations that are
meant for easy setup, and that do not live up to the demands of company
environments. Several DHCP client configuration support by default a
technology that is called Zeroconf by Apple or Automatic Private IP Ad-
dressing (APIPA) by Microsoft. This technology is intended for home and
small office networks and should create a usable IP network configuration
without any servers.

If a Windows or an Apple client does not get a response from a DHCP
server, it gives itself an IP address from the 169.254.0.0/16 network. This
is not only so during boot time – when a DHCP server is not reachable
for some time and a desktop cannot renew its address lease, it also falls
back to such an address. This is not sensible behavior in enterprise en-
vironments, where other parts of the DHCP configuration are needed as
well (e.g., routing and name servers). Here the automatic IP address con-
figuration should be shut off.

This means that during boot time, the desktop will wait until a DHCP
server is reachable and will only be usable afterwards. Since we will pro-
vide a highly available DHCP server infrastructure, that is not a big prob-
lem; maybe the user will have to wait a little longer during boot time. But
this configuration advice additionally has the big advantage that desk-
tops that have an address configuration – and that will be the majority
of them – will not lose it. This is because most clients today simply keep
their IP address if they cannot renew their address lease; they are not
immediately affected by a server outage.

Thus, any corporate network with more than ten or 20 desktops on it
is better served by turning off APIPA and establishing highly available
DHCP servers. It is also simple: there are two options that we can choose
from to realize high availability for DHCPD:

1. Failover cluster in active/active mode: ISC’s DHCPD has a built-in fa-
cility for clustering with an active/active model. In DHCPD parlance,
this is called a failover load-balancing configuration, i.e., both clus-
ter nodes will have the same state information and both will answer
requests from clients. State synchronization between several serv-
ers, i.e., exchange of changes to the lease database, is a capability
of DHCPD.
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The server configuration must name the other peers and must desig-
nate one of the servers as “primary” and the other as “secondary.” The
configuration is a matter of six lines in the DHCPD configuration file.
The main problem is afterwards that the configuration of both cluster
nodes has a shared part that must be kept synchronized – and that
there is no built-in support for that synchronization. Best practice is
to maintain and test that shared configuration part on some other
system and deploy it with rsync to the production servers. Of course,
if the configuration is stored in an LDAP server, that discussion is
moot; then the LDAP server must provide the high availability for
the DHCPD configuration.

2. Failover cluster in active/passive mode: We can use standard failover
cluster technology on operating system level, as described in Sect. 6.1.
The lease database file and configuration files must be on a file system
that belongs to that logical node and must be switched to the backup
system in the case of an outage.
The lease database is not cached and is also changed in a way that
makes corruptions very unlikely. Therefore standard cluster technol-
ogy can be used.

9.2.2 Domain Name Service (DNS)

DNS is a ubiquitous service on any IP network. It is responsible for map-
ping host names to IP addresses and vice versa. In addition it provides
information for email routing on the Internet, but this functionality is
normally not needed on corporate networks.

Whenever any of your clients wants to access a server, e.g., email.
example.com, it uses this name and needs a service that maps that name
to an IP address. DNS is that service. DNS puts host names into hier-
archically structured domains and assigns responsibility for domains or
parts of them to DNS servers. Servers that are responsible for a domain
are called authoritative for that domain.8 In this way, DNS servers form
a big distributed database of name mappings.

But DNS does not only provide names to address mapping – reverse
lookup is the often overseen feature. It gives computers the ability to look
up a name for an IP address. In fact, many services look up names for
addresses, e.g., for logging. If no proper DNS server is authoritative for
that IP address range, such a query waits until a timeout happens. An au-
thoritative server can answer immediately with a name or with a “name
unknown” response.

8 That is a shortened explanation; in reality name servers are responsible for
parts of domains, so-called zones. But that distinction is not relevant for our
book, so we use domain and zone interchangeably.
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In practice, timeouts are a larger problem than unresolved addresses.
While one can often live with the inability to have a name for an ad-
dress, waiting for lots of timeouts just for the sake of logging can have a
detrimental effect on application performance, i.e., proper reverse lookup
setup is needed to get performing and available applications. It is neces-
sary to have respective definitions for all internal IP address ranges on
one’s internal DNS server.

With a service that is as important as DNS, it is quite clear that we
want protection against outages of our DNS servers. As always, the fail-
ure can happen on many levels: the server system itself can crash, the
software can have errors, and the system administrators can make er-
rors when they manage the DNS data. The last situation is especially
problematic as one error in the data can make a whole range of applica-
tions unusable. Protection against this failure is usually done by creating
special tools that help to check company-specific rules before new config-
urations are activated. Outages that are caused by remaining errors are
categorized as major outages and disaster recovery must be used if they
happen.

Clients are usually configured to use a set of DNS servers; configu-
ration happens either by DHCP or manually. Then they just query their
DNS servers one after the other. DNS queries are connectionless, so there
is a timeout after which the client assumes that the server is not reach-
able, and the same query is sent to the next server in the list. This implies
that we get severe delays when the first DNS server on the client config-
uration list is down.

It should be noted that the DNS server has the responsibility to find
out the answer to the query. That often means that it has to connect serv-
ers with the authoritative information, issue the query to them, and pass
back the answer to the client.

A special case for each company is the question of whether they allow
resolution of Internet host and domain names. For instance, do we allow
any client on the company’s network to resolve www.google.com? The
answer depends on the policy of outbound Internet connections. If all In-
ternet connections are done over proxies, resolving Internet names is not
sensible for generic clients; this is just done at the proxy. But if all clients
can access the Internet, then Internet names must be resolved and the
internal DNS servers have to be able to send DNS queries to the Internet
too.

It is an important distinction that the DNS system has two purposes in
any network:

1. A query infrastructure where any computer system can ask for name-
to-address or address-to-name mapping

2. A publishing infrastructure where one can establish these mappings
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Fig. 9.14. Querying and publishing DNS information with separate servers

As Fig. 9.14 shows the servers for these two purposes may not be the
same. The query infrastructure might be supplied by caching DNS servers
that are not authoritative for any domain, but are just there for clients to
answer their queries. They pass queries to publishing servers and send
back the responses. As the name “caching server” implies, they also cache
responses to lessen the load on the network and on the publishing servers.
The complete contents of these servers are in memory; they do not have
a state on any disk. They also suffer no loss of functionality if they are
aborted and started anew: the cache will be empty and will be filled up
over time.

In contrast, publishing DNS servers are able to give authoritative an-
swers about a domain. These are also the servers that process update
requests for dynamic entries from DHCP servers. Static content of these
servers is stored somewhere on disk. Windows DNS server usually uti-
lizes Active Directory, whereas Unix servers traditionally use zone files.

In smaller installations, both functionalities are provided by the same
server. But in larger installations that have multiple domains within one
company, it may very well be that these are really two different servers,
as shown in Fig. 9.14.
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Case Study: High Availability for ISC’s BIND

Berkeley Internet Name Daemon (BIND) from ISC is the most used name
server in the world: a survey from May 2004 showed it served about 70%
of all Internet domains.

The case study will focus on high availability for DNS servers that
will protect against system and service outages. System administrator
errors (e.g., deleting the whole DNS database) are not in the scope of this
description. Neither are incidents that are caused by wrong management
of DNS records – they must be prevented by proper processes and good
tools. It must be said that good tools are usually not predelivered with
software for DNS servers, and BIND is no exception here. It is prudent to
create tools that integrate tightly into company business processes and to
implement safekeeping checks.

The concept of redundant servers is inherent to BIND. In fact, for In-
ternet domains we are forced to run a redundant server infrastructure;
no Internet domain name may be registered without it. As this is so easy,
this is standard practice in any corporate network as well. There are three
categories of configurations for domains:

1. Master servers hold the definitive (authoritative) content for a do-
main, typically in a zone file. But the content may also be stored on
other storage back-ends, e.g., on an LDAP directory server. The con-
tent is maintained on this server. Master servers were formerly called
primary name servers.

2. Slave servers also hold the authoritative content for a domain, but
in a read-only method. All changes to domain content are replicated
to slave servers; that replication is part of the DNS protocol. Slave
servers were formerly called secondary name servers.

3. Caching servers hold no authoritative content, but cache responses
for queries. Each DNS record has an associated lifetime (TTL) that
tells how long it may be cached.

The BIND configuration file tells about zones and which ones are mas-
ter and which are slave. Queries are cached automatically; this does not
need to be configured. One server configuration may mix master, slave,
and caching definitions for different domains.

When clients are allowed direct Internet connections, the cache serv-
ers will be configured to resolve Internet host names as well. If all clients
have to use proxy servers, this is not necessary, then just the proxy will
need to resolve Internet names and will do so over a separate DNS con-
figuration. For that, it will either utilize a special cache server or it will
use the ISP’s DNS servers.

It is good practice for larger installations (i.e., with several thousand
clients) to separate cache servers from publishing servers. This is not
necessary for smaller and mid-sized installations, except when an LDAP
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back-end server is used for domain content storage. (The rationale for
that will be provided later.)

� Caching DNS Servers

The need for high availability for caching DNS servers is often over-
looked. Computer systems have a list of DNS servers that they may send
queries to. They try to contact each server in turn and wait for an answer
until a timeout happens, then the next server is tried. Many systems have
a limit on the number of servers in that list, often three.

Outage of the first DNS server in that list does not cause nonfunc-
tionality at the client – but the ongoing need to wait for a timeout until
the second server (typically several seconds) can be questioned may well
render a desktop unusable from an end-user’s perspective. We just need
to imagine waiting several seconds for any host name that is used in any
program and we see the problem immediately.

Therefore the best solution is to establish high availability for the
servers with a failover or a load-balancing cluster. Since DNS servers
do not keep a state, such a cluster is very simple and easy to set up, the
only resource that must be switched to the other cluster node is the IP
address, and the server process must be started.

Nevertheless, clients usually have two DNS servers configured, just
to be on the safe side. So even in the case of an outage of our high-
availability DNS server cluster, we will still have another server to an-
swer queries, albeit with timeouts.

� Publishing DNS Servers

For DNS queries, there is no difference between master and slave servers,
both are authoritative. An authoritative server is chosen at random to
answer a query. If an authoritative server cannot be reached, another
server is tried; therefore, failure of a server does not render the service
useless as long as other authoritative servers are still running.

Database content errors propagate with very small delay. The mas-
ter server sends notification to all known slaves and slave servers fetch
the updates. Slave servers also fetch updates at regular intervals; that
interval is part of the zone definition and is often in the range of days.
Database destruction therefore propagates more slowly.

If the master server is down, the clock starts ticking to migrate one of
the slave servers to a master configuration. As explained, a DNS domain
has associated expiry and refresh times that control the update interval
between master and slave servers. The new master server must be estab-
lished before the expiry time has passed, but this will not be a problem
as this is normally a value of several days or even weeks. In such a time
span we can buy and set up a whole new server.
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Therefore, high availability for publishing DNS servers means estab-
lishing enough slave servers at all sites. And it means a method to update
the configuration of all servers at once, and to change the address of the
master server if necessary. The easiest way is to keep a backup of the mas-
ter server’s BIND configuration and zone files, and to restore the master
configuration on one of the slave servers. Then we change all slave con-
figurations to utilize the new master server. Of course, it is recommended
to use automated provisioning for that task.

Backup and restoration of zone files is actually done to keep comments
in the files. All zone files are available on slave servers as well, but there
they are created by the replication that strips comments and reorders the
entries.

Dynamic DNS is handled similarly. Since the zone file has been repli-
cated, it can be taken from the slave server that becomes the new master.

Another possibility is to use an LDAP back-end server to store the
DNS domain content. This is particularly of interest if we also use the
LDAP back-end server for the DHCP server; then all network informa-
tion can be stored on this directory server. Of course, then the LDAP
infrastructure becomes mission-critical and must be highly available in
itself.

Using the LDAP back-end server has one drawback though. For larger
installations – and that is the case where LDAP is particularly of inter-
est for maintenance reasons – LDAP directory servers are often not fast
enough to cover the load of DNS queries. Therefore it is recommended
that the master server with its LDAP back-end server is not announced
as the authoritative name server. Instead, just the slave servers (which
have all the content in memory and are thus fast to answer) are used as
publishing infrastructure.

It is not sufficient to rely on caching DNS servers to take the load from
a master server with an LDAP back-end server. Updates for a caching
server are controlled by the TTL value, whereas updates for a slave server
are controlled by the expiry and refresh values and by active change no-
tifications from the master server. Very often, we want to have a low TTL
to be able to change addresses for names very quickly, e.g., for disaster
recovery. In such cases, slave servers can still hold the cache for a long
time owing to longer refresh and expiry values.

9.2.3 Directory Server

Directory servers are systems that store named objects with various at-
tributes and where clients can query the server for the object. They op-
erate under the assumption that their content is very often read and, in
comparison, seldom changed; they are optimized for this usage pattern.

So that was the definition of a directory server – but it is far too generic
and too abstract to understand what one does with directory servers and
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why they are important. So, what are they good for, and where are they
used?

Application Domains of Directory Servers

The oldest usage of a directory server is to hold account and user group in-
formation. Each account or user group is an object, the account or group
name is the key to request that object from the server. The object’s at-
tributes are full name, office location, office phone, numeric user ID, home
directory, and others. At this stage, the objects were very simple: most at-
tributes can only appear once per object. For example, when a person had
more than one office phone, it was not possible to record that properly.

Later, directory servers were also used to store information about per-
sons beyond accounts. They serve as a phone or address book and keep
information like address, phone numbers, and email, but also organiza-
tional information, like the name of the organizational unit, supervisors,
proxies, colleagues, and subordinates. These directory servers cope with
the fact that our information about persons is not as simple as it seems
and allow most of this information to appear multiple times, i.e., it is pos-
sible to have multiple email addresses for a person (maybe designating
one as the preferred or primary address), multiple addresses, multiple
phone numbers, etc.

These kinds of directory services serve both as a standalone lookup
tool for company staff, e.g., to replace printed phone books, or they are
used in connection with email systems, where they first provided the
much needed lookup facility for the email addresses of colleagues and
later lookup of full contact information. (Still, the organizational infor-
mation is often missing from email address books and is only available in
standalone user interfaces.)

Roughly at the same time, the idea came up that one can use direc-
tory servers to store all information that one needs to manage IT systems
– almost all fit the requirements of “named object, read often, change sel-
dom.” Computer information, system configurations, printer information,
association of network file shares, and software installation, everything
that is relevant for system management could be stored in one place, on
one server, and managed consistently with one interface.

Last in this development, these different kinds of directory servers
were put together and merged into one coherent infrastructure. This sys-
tem management infrastructure is not easy to roll out, i.e., it comes with
quite some up-front costs. But it has big advantages in reduction of sys-
tem management efforts, i.e., it is a big boon for ongoing operating costs.
The more systems are concerned, the higher is the return on investment –
as long as we have handcrafted server installations with manually man-
aged accounts, configuration, and software, it does not buy us an advan-
tage. But with as few as ten similar systems, it reduces management
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effort dramatically – this is not only a technology for large installations
of many thousands of systems.

In the future, there will be a directory server setup in any sizable Win-
dows desktop installation. Without that directory server, no desktop will
be able to function. It does not need to be emphasized how important high
availability and disaster recovery are for such an elementary infrastruc-
ture service.

Important Directory Servers

The following directory servers are noteworthy; we start with the older
ones.

Network Information Service (NIS): This is the traditional and ba-
sic directory server of Unix systems, first introduced by Sun under
the name YP (for yellow pages). Owing to its inherent security weak-
nesses it should not be used anymore for new deployments.

NIS+: An attempt by Sun to overhaul the NIS system and make it se-
cure and scalable. This never caught on because it was not available
on other Unix systems and LDAP got the spotlight later on. No new
deployment should use it either.

Novell eDirectory: Formerly called Novell Directory Services, this di-
rectory service has been used by many large companies for a long
time. It is enterprise class and has proven its stability and manage-
ability.

Windows NT Domain Directory: The first widespread directory serv-
er that got beyond accounts and included system configuration. While
Novell’s server was available earlier and is technically better, the
tight integration with Windows caused deployments at many com-
panies that would not have thought of a directory server otherwise.
Nowadays, this server has been superseded by Active Directory.

Active Directory: The directory server for Windows 2000 and beyond,
which has become mandatory for medium to large Windows instal-
lations. Active Directory pushed many corporations – some of them
unwillingly – into the use of directory services, where they finally saw
the advantages of such a service. Owing to the ubiquity of Windows
desktops, it will be eventually installed in almost all companies.

Netscape Directory Server: This was the first server that provided an
LDAP interface (more on access interfaces later). Development of this
server was been split into two main tiers, via the iPlanet Directory
Server, and resulted in Sun’s Java System Directory Server and Red
Hat’s Fedora Directory Server. This server is said to be used for most
installations on Unix systems.

OpenLDAP: The predominant open-source LDAP server. This server is
preferably used in environments where the budget is tight and the
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number of objects is low. But even in those environments, when it
comes to high availability, Red Hat’s Fedora Directory Server should
be taken into account first.

X.500 directory servers: These are directory servers for large institu-
tions, often government or military, that need federated directory
servers to store all kinds of information about their staff, citizens,
customers, and systems. ISODE’s M-Vault, eTrust from CA, and DirX
from Siemens are examples of such servers. They are very complex
and are usually slower than “pure” LDAP servers; therefore, they
should only be deployed if X.500 back-end functionality is needed.

In summary, one can say that there are two classes of products: the
PC-oriented products from Microsoft and Novell, which are tightly inte-
grated into systems management of many desktops, and the X.500/LDAP
products, which target the market of generic enterprise information sys-
tems that can also be used for systems management tasks.

Please note that, strictly speaking, DHCP from Sect. 9.2.1 and DNS
from Sect. 9.2.2 are also directory services. We did not include them here
in the overview since they have already been described in detail.

Server Categories

In the previous section some terms appeared that should be mentioned
here, namely, network protocols that are used to access directory servers.
These protocols are so prominent that they are often used to categorize
products – though this marketing decision does much to muddy the water.

Just two server categories are of importance today, LDAP and X.500
servers. All other server categories are legacy technology that is bound to
lose market share drastically and are or will be relegated to niche mar-
kets. Some of them, like Novell’s eDirectory, have already migrated to
LDAP, which will be the predominant directory server model of the fu-
ture.

Both LDAP and X.500 servers have a shared data model in common:
objects are uniquely named and are ordered into a tree hierarchy. The hi-
erarchy can be used to restricts searches, and to delegate administration
for subtrees. Therefore, different subtrees are used to store information
on people and computers, maybe even further structured according to or-
ganizational units or geography.

Each object has a class: the class definition explicates which attributes
an object may have. Attributes have types that are checked by the server.
Classes are in an inheritance relationship, i.e., one can extend them. A set
of classes, their relationship, and their attribute definitions are called an
LDAP schema.

Inheritance is commonly used to add classes with new attributes to
an existing LDAP schema. Most often, a set of standard X.500 and LDAP
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schemas are used as the core and are extended by the directory server
vendor by specific classes with vendor-specific attributes. Then, each com-
pany extends the schema with its own classes and its own company-
specific attributes, as needed. Generic client software will only access the
core attributes; vendor-specific client software will also know about the
vendor attributes. Usage of the company-specific attributes has to be in-
tegrated into applications by programming work.

Since security-relevant information is usually stored in directory serv-
ers, all products provide fine-grained access control possibilities. Access
control can be both attribute-based and tree-based, and provides ample
flexibility to implement any authorization scheme that one can think of.
These capabilities were standardized in 2000 with LDAP version 3, which
all products are converging to.

� LDAP Servers

LDAP, the Lightweight Directory Access Protocol, is a member of the IP
protocol suite to access directory servers. The protocol includes both query
and update operations; query operations can also be expressed as URLs.
LDAP is already the prevalent method to access directory services; it re-
mains be to be seen if the alternate method of using Web services (e.g.,
utilizing Directory Services Markup Language, DSML, in Simple Object
Access Protocol, SOAP, requests) will catch up since it is much slower and
directory service lookup performance is crucial for many applications.

All modern directory servers provide LDAP as an access protocol.
Some of them have LDAP as their only, or at least as their preferred,
protocol. Such servers are colloquially called pure LDAP servers. Stor-
age of the directory data is handled directly by these servers, in varying
formats (files, embedded databases, or by utilizing database middleware
products).

For many other servers, be they relational databases or X.500 servers,
LDAP interfaces are available. They allow these products to be used as
LDAP servers as well. Sometimes an LDAP server is nothing more than
a gateway that forwards the LDAP request – after an appropriate trans-
formation – to the real data source, and relays the response back to the
client.

The differentiation into pure and nonpure LDAP servers is primarily a
marketing issue, and not a technical classification – for a client the access
protocol’s implementation quality does matter, and it does not matter if
that is the preferred access method. Nevertheless, mature pure LDAP
servers often have better standards compliance, better performance, and
better administration tools than servers with an LDAP interface that was
added on.
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� X.500 Servers

X.500 servers are the heavyweights in the directory server arena. They
need plenty of resources, detailed up-front planning and setup, and lots of
administration work. They are suitable for very large organizations that
have to keep millions or even billions of information objects, and where
there must be a high degree of delegation of administration of these ob-
jects to many suborganizations, but which must also be tightly controlled
for security.

X.500 directories are traditionally accessed by the Directory Access
Protocol (DAP) that is part of ISO’s X.500 protocol suite. But nowadays
that protocol is losing its importance and is being replaced more and more
by LDAP interfaces. Thus, X.500 servers are turning themselves more
into LDAP servers with especially powerful, flexible, and complex back-
ends.

Case Study: High Availability for Active Directory

Active Directory (AD) by Microsoft is one of the premier solutions for a
directory server. Since it is mandatory to use it in all but the very small-
est company setups for Windows desktops, virtually every company is
expected to have it installed – if not now, then within the next few years.

While Active Directory is not easy to design and set up properly for
a large enterprise, it comes with large savings in operational costs. It is
used to store information about:

• Accounts, including groups of accounts
• Address book and contacts
• Desktops, including groups of desktops
• Desktop configuration
• Printers
• Network shares
• Location (site) of IT systems
• Software that must be installed on systems

As we can see from that list, usage of an Active Directory server in
Windows environments goes way beyond the storage of account informa-
tion like user IDs and groups. Windows network administrators are able
to define group policies that describe the target state of a Windows sys-
tem: which software shall be installed, what services are running, what
users shall be allowed to do on the local system, what system configura-
tion shall exist permanently or locally during a login session, which net-
work printers and shares are connected, and loads of other configuration
items. Such group policies are registered and managed in the directory
server and partly stored on network shares. They are accessed at boot
and login times, and also regularly in-between. That means that Active
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Directory gives the Windows administrator the ability to change settings
on all desktops on the fly. Such configurations can also be targeted for
specific organizational units, or for specific user groups, etc.

But this also means that desktops are highly dependent on the avail-
ability of the Active Directory server. Without them, they will not boot
properly, will not be able to log in to the Windows domain. Therefore, Ac-
tive Directory servers are prime candidates for high-availability setups,
and also for disaster-recovery protection.

Active Directory servers are effectively special-purpose database serv-
ers. Like other database servers, they have their own clustering capabil-
ity. Therefore, even though it would be possible to use a generic failover
cluster for Active Directory server system design, this is usually not done.
Instead, an Active Directory server cluster uses an inherent clustering
technology that distributes cluster nodes over a campus network. Each
change in the directory is replicated to all nodes in the cluster. The clus-
tering technology even allows changes to be processed on each cluster
node; this is termed multi-master replication.

For these changes, no global locks exist to prevent changing the same
directory object at two cluster nodes. This works well since objects are
seldom changed anyhow, and this optimistic strategy leads to very few
conflicts. In the case of conflicting changes, a defined conflict resolution
algorithm exists.

High availability is assured by setting up multiple Active Directory
servers and configuring intrasite replication for them. This works only if
they are all within one LAN, owing to bandwidth and latency require-
ments. We need to configure them for immediate replication: usually
changes are replicated in batches to save network traffic. These serv-
ers must be explicitly configured to serve the same domain, DNS records
must be set up to point to those redundant directory servers, and they
should also be announced as alternate servers in the LDAP configura-
tion.

For disaster recovery, it is possible to establish an intersite replication
to an Active Directory server on the disaster-recovery site, then systems
on the disaster-recovery site can use that Active Directory server. Such
replications are optimized for usage over WAN connections.

There are some Active Directory servers that have special roles, the
so-called Flexible Single Master Operation (FSMO) roles. These roles en-
able those servers to make structural changes to the whole cluster or to
the schema, or they check consistencies between cluster members. While
this functionality is not needed during normal operations, it must not
be turned off for long either. Therefore, when an Active Directory server
that has such a role has an outage, processes must exist to notice that
and to promote another server to take over the role. This has to be done
manually.
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But high availability and disaster recovery for Active Directory serv-
ers is not sufficient. Since group policy template files are stored on net-
work shares, the network file servers must be made highly available as
well. For that, standard failover cluster technology can be used.

9.3 Backup and Restore

Backup and restoration of data is one of the most important duties in
any IT operations environment. Too many things can go wrong, too many
possibilities for failures exist in our complex environments, for this pre-
caution can be omitted.

As a trivial view, the task is easy: we copy data somewhere, and copy
it back when they are needed. But in practice, this area is much more
difficult. We do not only need to do the actual data backup, but we must
also manage our backups.

We can distinguish three categories of backups:

1. System backup is the method to save installed software and con-
figurations. This is primarily needed when release management pro-
cesses do not allow a system’s state to be reconstructed on a whim,
i.e., if there have been manual configurations on a server where the
time to track and repeat them is longer than the time to restore the
system.

2. File backup is the elementary task of backup systems, the one that
they were made for in the first place. It is possible to do full or incre-
mental backups, and elaborate mechanisms exist to coordinate them
for optimal usage of resources with maximized safety.
Nevertheless, there are still problems that are inherent in the task.
When files are opened all the time, and their content is partly cached
by the operating system or the application, it is not possible to back up
a consistent version of that file. We cannot back them up with normal
means, but need database backups for them.
Sometimes it is not easy to restore data in an exact state that can be
used by the applications. This is particularly a problem for Windows
backups of FAT partitions, as we cannot restore the short 8+3 name
that might be used by some applications. The primary remedy for that
problem is to use NTFS file systems instead – FAT should never be
used in an enterprise context.

3. Database backup handles files or partitions that are used all the
time. There, traditional backup strategies do not work. Instead, we
need support from the application. Either it must be possible to de-
mand a checkpoint that creates a consistent state of the data, or the
application itself must be integrated into the backup system.
While checkpoint functionality used to be quite common, it also of-
ten introduced the need for a system time where no changes in the
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database could be made. Since this is often not possible for high-
availability installations, continuous backup technology by applica-
tion integration has become more common.

One thing is really important for backups:

A backup is only as good as a functioning restoration.

That is an elementary issue: first, the restoration itself must work; sec-
ond, it must succeed in acceptable time frames. In particular, the time to
restore the data is often underestimated. Sometimes restoration manage-
ment needs more time than actual data restoration; therefore, operations
staff must be trained to reach best restoration performance.

� Backup on Failover Clusters

Backup systems that are used on failover clusters must support the dis-
tinction between physical and logical hosts in a cluster. Backup of the
physical nodes is primarily made as a system backup, sometimes also for
file backup.

This backup must not touch disk volumes that are resources for clus-
ter services: when a failover happens that volume will not be there for
the next backup. Instead, logical hosts must have their own backup def-
initions and those must switch together with other resources from that
service.

This is sometimes a problem if the backup is not initiated by the
backup server, is but on the computer system where the data is. There
we either have cron jobs, they must support switching logical hosts from
one cluster node to another, or some daemon runs on each cluster node
and initiates the backup, then a cluster service failover must register the
need for backups of the logical host with that daemon, as well as deregis-
ter the need during shutdown.

9.4 Monitoring

Monitoring is another activity at the heart of IT operations. It is the coor-
dinated effort to check that IT services deliver their supposed functional-
ity and that SLAs are satisfied. Coordinated means that there is a central
place (or a few places) where the observations are collected and analyzed.

The ultimate goal of monitoring is to detect defects and problematic
situations before they influence operations and availability. If we do not
achieve that, we settle for collection and notification of failures, as well as
escalation if failures are not remedied in an acceptable time range; there-
fore, it is a technical precondition for good incident, problem, and escala-
tion management. In fact, failure detection is the traditional objective of
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monitoring, while failure avoidance is the more modern interpretation of
it.

The emergence of high-availability solutions is one of the reasons for
this change of objectives. Such solutions often have inherent monitoring
capabilities and automated reactions. For example, monitoring of service
functionality is an essential part of failover clusters, needed to detect fail-
ures that need software restarts or service migration to another cluster
node. This cluster-inherent ability to detect failures and react to them
makes external monitoring capabilities for outage detection less neces-
sary.

But when we realize high availability with redundant components,
we have automated automatic service recovery on a backup component.
But the defective component does not repair itself automatically – and
we need notice of its failure to trigger repairs. After all, after part of a re-
dundant component fails, we usually have lost redundancy and thus high
availability. So, even in cluster environments, monitoring is responsible
for defect discovery – only here it is the discovery of defects in redundant
components.

Another objective for monitoring in high-availability environments is
the detection of major outages. By definition, high-availability solutions
only cover minor outages. When several components fail at the same time,
or when deadlocks occur in redundancy management, some external sys-
tem must notice this and notify operational staff to look into the incident.

Redundancy management often only controls replacement or discards
usage, but has no notification component. Integration of notification poli-
cies would be difficult anyhow, since this needs event compression and es-
calation, as explained in the following. Discovery and notification should
be quick to reduce the time from outage to full redundancy recovery; re-
member that we have shown that shortening this interval is the best and
cheapest way to improve overall availability.

Detection of a defect or an anomaly is called an event. Monitoring sys-
tems do not only recognize that event, they also react to it or support
manual reaction. When a service or a component has a defect and is
repetitively accessed to test for functionality, lots of events for a defec-
tive component will arrive at the monitoring system. Then people must
not see all those events, it would hinder them in fulfilling their recov-
ery work. Also, several events could result from one defect, e.g., a router
outage could make all systems behind that router inaccessible.

Therefore events must be collected and related events must be de-
tected. Such related events are reduced into incidents and an action is
triggered to handle that incident. Such an action may be an automated
one, but is most often the notification of operators or system administra-
tors to look into the error.

This does not imply that after reception of one event all similar events
from the same defect are discarded. It could be that this one event is
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overseen or gets the wrong priority. Therefore it may well be that ongoing
event reception can lead to creation of another incident, where this time
the associated action might be an escalation.

In high-end enterprise systems, the reduction of events to incidents
and the mapping of incidents to actions is maintained in a monitoring
information system. This system is closely coupled to incident and esca-
lation management process definitions. Since such processes are increas-
ingly being defined formally, we can expect to see more deployments of
computer-based support for such information systems as well.

A monitoring system should also keep its monitoring results for some
time, to be able to detect continuous degradation of service quality. Such
issues are the first signs that defects will be more probable in the fu-
ture and that problem management should look at these results. On the
other hand, a monitoring system will not keep the data for a long time
period; that is the task of capacity management systems to which such
data might be migrated.



10

Disaster Recovery

The previous chapters focused on the principles (Chaps. 1, 3) and on the
realization of high availability for systems and infrastructure (Chaps. 5–
9). In this chapter, we will look at approaches to realize disaster recovery
– i.e., how to recover from a major outage.

High-availability implementations handle minor outages; either they
protect against them, or they provide very quick recovery. But still the
issue of major outages and their associated service disruptions remains.
Redundant components may fail at the same time, or a backup compo-
nent may fail while the primary component is being repaired. There are
also error causes that high-availability systems do not prevent against:
the obvious ones are environmental disasters like earthquakes and hur-
ricanes, en vogue is the fear of terrorist threats, and we must not forget
human errors.

In our high-availability planning, we focused on failures that lead
to minor outages. To achieve that we created the project-specific system
stack, as outlined on p. 60ff, that discards some components that are sin-
gle points of failure but are beyond the scope of high availability (e.g., the
physical environment). In addition, we discarded some failure scenarios
as irrelevant for high availability (see Sect. 4.2.3), typically because their
probability is low.

Now, for disaster recovery, we consider more components and more
failure scenarios. The approach and the basic principles remain the same,
as we will see in Sect. 10.2 on p. 291. We have a slight shift in objectives:
while high availability is concerned both with protection of and recovery
from failures, disaster recovery is only about recovery, about restoration
of IT service functionality in major outages.

This is an important point: we distinguish high availability and dis-
aster recovery by the class of failures they are designed to cover. But
classification of failure scenarios depends on the respective project. If we
have a system design that recovers automatically from a system outage
by a failover to an other system at a remote time within the minor outage
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service level agreement (SLA), we call that system design always highly
available. For another IT service, the same failure scenario might lead
to a manual recovery at a system at the same remote site that is not
done within the minor outage SLA time. Then we call that disaster re-
covery, even though similar systems at the same sites are involved – the
processes and objectives for service recovery are different, that is the dis-
tinguishing factor.

Typically, a phased approach is used, where services are restored grad-
ually, until eventually all resources are available again. Disaster recov-
ery is also concerned with a greater part of manual processes than high
availability; while high availability wants to create strict automated pro-
cedures, disaster recovery works more by trusting our IT staff to assess
vague error situations properly and react in a flexible and appropriate
way.

Within the IT Infrastructure Library (ITIL), the disaster-recovery pro-
cess is also called IT service continuity, to show its alignment with the
business-continuity process. For the sake of this book, we use the tradi-
tional term disaster recovery though, to emphasize that we want to pre-
pare for disasters of mission-critical or important servers.

For a business owner, definition of the term disaster is obviously
highly context-dependent, with lots of gray areas. While destruction of
a computing center by an earthquake is clearly a disaster in the eyes of
everybody, system outages of 1 day may be a disaster for manufacturing
companies when the production depends on them. On the other hand,
many clerical tasks can survive quite a few hours without computers.

• Definitions of related conceptual terms, in particular “disaster,”
are covered in Sect. 10.1.

• Our approach to disaster recovery is presented in Sect. 10.2.
• The conceptual design in Sect. 10.3 expands the definitions and ex-

plains them in more detail.
• The solutions that can be used to realize disaster recovery are pre-

sented in Sect. 10.4.
• Tests are covered in Sect. 10.5.
• A holistic view goes beyond the technology issues and is presented

in Sect. 10.6.
• The prototypical system design from Sect. 10.7.4 is a blueprint

that can be used for many situations.
• Activation of a disaster-recovery system is another blueprint and

is presented in Sect. 10.8.

But before we dive into the definitions of the concepts, let us have
another look at the business need for disaster recovery that shows just
how urgent it is that disaster-recovery solutions are provided at least for
all our mission-critical servers. First, we will look at the most important
problem that is associated with major outages, namely, data loss.
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Service Loss and Data Loss

Since service loss is often accompanied with data loss, or data loss itself
is the reason for service shutoffs, it is of interest to look at the conse-
quences of data loss for a company. Several studies have been made, by
accountancy companies, and by data protection and storage providers.
They agree on some key facts:

• The accounting company McGladrey and Pullen reported that after
serious data loss, 43% of companies must close. They also reported
that 0.2% (one out of 500) computing centers have serious data losses
per year.

• Toigo reports [12] that more than 10 days of computer outage cannot
be recovered by most companies. Fifty percent of them go out of busi-
ness within 5 years if they had outages for that long.

• According to EMC, only 2% of data loss is caused by disasters. The
major cause (45% of cases) is human errors. The rest of the errors are
caused by other failures, e.g., software errors.

From these numbers we see that data loss – while not identical to disaster
– is clearly a major symptom, and is one of the failure consequences that
we need to protect against.

It should be noted that these numbers are obviously for enterprise-
class storage systems; other companies report much higher hardware de-
fect causes for consumer-grade hardware. What is actually of interest for
that data is that the common notion of disasters – earthquakes, floods,
terrorist attacks, etc. – happen quite seldom. Instead, most data loss is
caused for everyday reasons, but has equally disastrous consequences.

10.1 Concepts

There are some conceptual terms that are very important for disaster
recovery. One of the problems of disaster recovery is that we find many
vague descriptions of these terms and this leads to communication prob-
lems. Thus, to ensure that we have a common vocabulary, let us make a
few definitions of the important terms first:

Major outage: A failure that impacts an IT service for end users and
which cannot be repaired within the availability limits of the SLA.
Major outages are also covered by SLAs, in the “Service Continuity”
section, and are described with the recovery time objective (RTO) and
the recovery point objective (RPO); see later. Section 2.2 introduced
major outages and SLAs.

Disaster: In the context of this book, a disaster is a synonym for a major
outage. Both terms are used interchangeably.
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Declaration of disaster: The decision that a major outage has hap-
pened and that disaster recovery starts. This decision is usually not
done automatically, but is made by IT staff and business owners to-
gether, as part of an escalation management process. Often the affir-
mation of executive management is necessary to declare a disaster.

Recovery time objective (RTO): The time needed until the IT service
is usable again after a major outage. It starts with the declaration
of disaster and is part of the SLA that describes the handling of ma-
jor outages. Table 2.2 on p. 28 lists typical RTO and RPO values for
different system categories.

Recovery point objective (RPO): The point in time from which data
will be restored to be usable. It is typically expressed as a time span
before the declaration of disaster and, like the RTO, is part of the SLA
that describes the handling of major outages. In major outages, often
some part of work is lost.

Disaster recovery: The process to restore full functionality in the case
of major outages, including all necessary preparation actions.

Disaster-recovery planning: The management activity to define the
necessary actions for disaster recovery and that governs their imple-
mentation.

Primary and disaster-recovery systems: In normal operation, the
primary system supplies the IT service. A disaster-recovery system
takes over functionality and supplies the service in the case of a major
outage.

Primary and disaster-recovery sites: The prototypical disaster sce-
nario is destruction of the physical environment, e.g., by floods or fire.
The site where the primary IT systems are normally placed is called
the primary site. A disaster-recovery site is a site where disaster-
recovery systems are placed. The disaster-recovery site is at a location
that is (hopefully) not covered by the disaster and can take over the
role of the primary site during disaster recovery.
Primary and disaster-recovery sites are roles, not absolute descrip-
tions. A disaster-recovery site for one service may very well be the
primary site for another service, and vice versa. In fact, this is a very
common setup.

At the start of this chapter, it was emphasized that high availability
and disaster recovery are moored in the same ground. Both have ongoing
availability of IT services as the objective, although with different SLAs.
Both utilize the same approach as we will see in Sect. 10.2 on the next
page.

But there is a conceptual difference that we need to note here. The
goal of high availability is to provide again full functionality in a short
time after a component failure. Disaster recovery is not as ambitious,
and instead it puts first things first and starts to look at partial function-
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ality for essential services. Of course, eventually full functionality will be
restored, but this is an action that may take some time.

In disaster recovery, the restoration process itself is phased. First, re-
dundant components provide (maybe reduced) functionality with a disas-
ter-recovery system at a disaster-recovery site. Later, full functionality of
the primary systems at the primary site is restored. Disaster-recovery
actions also include the preparation and maintenance of the disaster-
recovery systems, as well as training of staff and documentation.

This implies that disaster recovery is not an action that just happens
in the case of disasters. Instead, it is an ongoing administrative and op-
erational activity that includes preparation to mitigate the consequences
of a disaster.

In addition, the availability and the cost of required resources must
be taken into account. This includes nontechnical resources and organiza-
tional provisions that will be needed to handle an actual disaster-recovery
event. This is valid for high availability as well, but disaster recovery is
based even more on processes and procedures than on fully automated
technical solutions.

10.2 Approach

The principal approach to plan and realize disaster recovery was pre-
sented in Chap. 3. It is the same approach that is also used to plan and
realize high availability. Let us repeat it here, as a summary:

1. Determine objectives
(a) Identify systems that need disaster recovery
(b) Determine RTO and RPO
(c) Identify users and departments that are affected
(d) Identify responsibilities of IT staff and business owners

2. Create conceptual design (see also Sect. 10.3)
(a) Create changes to business and IT processes that are necessary to

realize and support disaster recovery
(b) Identify and set involved system locations, i.e., primary and dis-

aster-recovery sites
(c) Define high-level solution approach and associated costs
(d) Determine IT staff and vendors that are involved; create RASIC

chart to define roles and responsibilities
(e) Make a first stub at failure scenarios and failure categories, from

a business point of view
(f) Evaluate scenarios, and determine their relative probability and

relative damage
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(g) Determine which scenarios are already covered by high-availabil-
ity technology, which must be covered by this disaster-recovery
project, and which are out of scope

3. Create system design
(a) Analyze the system components, create a project-specific system

stack, and create a dependency diagram
(b) Extend failure scenarios to cover technical component failures
(c) Find single points of failure. Either provide recovery for them

through redundancy, or provide other means to restore acceptable
service within the disaster-recovery SLAs.

(d) Review that the solution handles all relevant scenarios

4. Implement solution
(a) Technology for implementation can be taken from Chaps. 5–9
(b) Technology that is particular to disaster recovery is presented in

Sect. 10.4
(c) Particulars of network design for disaster recovery are described

in Sect. 9.1.6

5. Define process
(a) Create detailed disaster recovery procedures
(b) Train people
(c) Specify and conduct tests. Section 10.5 handles this in more detail.

6. Update design and implementation as necessary
(a) When objectives change
(b) When primary systems are changed or updated
(c) When experience from other projects and problem analysis show

potential improvements

This approach also gives the rough overview of the rest of this chapter.
After conceptual design and technology, we will present an example for a
disaster-recovery project (in Sect. 10.7) and for failover procedures (in
Sect. 10.8) that can be taken as blueprints for other situations.

10.3 Conceptual Design

The conceptual model is concerned with the interface between the busi-
ness and IT systems. On this level, decisions must be made that must
be agreed upon both by IT (technical) and by business staff. These de-
cisions will have a direct influence on the technical solution and will be
requirements for the system design.

First, we will have a look at scenarios for major outages, and their
classification with the help of the system stack. Then we will address the
identification of systems, i.e., how to set the scope of disaster-recovery pro-
jects. The primary and disaster-recovery sites have been defined already,
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but their selection deserves a detailed explanation. There are several pos-
sible categories of primary and disaster-recovery systems with differing
failure protection properties; the business owner must be involved in the
basic design decision that is made with this high-level selection. Finally,
we will discuss a specific part of RTO, the service recovery time; this clar-
ification is also needed during discussion of the IT department and busi-
ness owners.

10.3.1 Scenarios for Major Outages

In Sect. 4.1, we introduced the system stack, redundancy, robustness, and
virtualization as basic concepts, and presented dependency diagrams as
a tool to express and analyze system designs. These basic concepts and
tools are as valid for disaster recovery as they are for high availability.

In particular, the system stack gives us a categorization of disaster
scenarios and provides abstraction levels for failures and problems that
allow us to evaluate different measures and protection activities.

As we will see, it is important to not only concentrate on the popular,
but improbable case of total physical destruction of a whole site. A total
solution has to protect against this worst case, but also against many
other scenarios which have higher probability and more subtle results. All
of them have one thing in common: classic high availability architectures
like failover cluster or server farms at one site do not protect against
them.

Table 10.1 on the following page brings together the system stack and
examples of major outages on each stack level. And yet, this book mostly
covers only errors that happen with good-willed usage. Just as important
are outages from associated security risks, i.e., damage from deliberate
attacks. Most software programs and installations today are still full of
errors that can be exploited by hostile forces and can be used to attack
several target components at the same time.

Protection against such security-related damage is beyond the scope
of this book though – it needs a whole treatise of its own. Nevertheless
one should note that middleware systems are attractive attack targets
as they keep valuable information of companies and are widely spread.
After all, the bragging undergraduate student just defacing one’s Web
site is not the danger anymore; today’s hackers are more interested in
important targets that have monetary advantages.

Therefore it is prudent to introduce processes and technology that will
handle major outages – we name them disaster recovery. These processes
will not prevent major outages, instead they will enable us to handle re-
covery from a major outage faster and in a reliable way.

This is a related, but different goal than that of high availability. One
could argue that disaster recovery is sufficient for all outages – after all, if
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Table 10.1. Examples of major outages in a system stack

System stack level Major outage example cause

Administration
environment

Human error is an all-time favorite, according Murphy’s
Law: “If something can go wrong, it will go wrong
eventually.”

Redundancy at lower-level technical components does not
help at all: all redundant components will faithfully
replicate that error

Application Software errors may leave data in an inconsistent state;
no cluster protects against that.

Some software may not be started anymore afterwards –
even worse, some software may be started and may
cause even bigger failures owing to the bad data!

Middleware Data inconsistencies cause a restart to fail.
Distributed cluster software may fail

Operating system Failover cluster software error.
Errors in the hardware driver code are the same on all

cluster nodes. Errors in the file system corrupt shared
storage beyond repair

Hardware Firmware on redundant hardware is usually the same on
all redundant components and may fail in the same
way

Environment Here are the prototypical examples for disaster causes:
floods, hurricanes, earthquakes, terrorist bomb attacks.

But there are also outages that should be prevented in
the data center, but where protection failed:
uninterruptible power supply (UPS) outages, or fires
that got out of control

this handles disasters, it should handle minor outages as well. But there
are three differences:

1. Outage times are different. That is the distinguishing factor, the dif-
ference between minor and major outages.

2. Risks and costs are different. In practice, high availability is a well-
known and tried technology that has a good cost-value relationship.
But implementation costs and switching costs for disaster recovery
are higher. Therefore, switching to a disaster-recovery site in a disas-
ter still costs a lot of money, even with all the preparation; the costs
for a mirrored disk are negligible compared with that.

3. Processes are different. High availability strikes for automated pro-
cesses to protect against or recover from well-known failures. In con-
trast, disaster recovery is concerned with unknown or rare incidents
where automated recovery is often or is inherently not available;
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therefore, disaster recovery has a greater dependency on manual pro-
cesses, though they are computer-supported.

So, most of the time, outage protection or handling is established on sev-
eral levels, both for minor and major outages. High availability and disas-
ter recovery are two sides of the same coin; they complement each other.

There are exceptions to that “multiple redundancy” rule, for very spe-
cial applications. The most famous one is Google, where the whole appli-
cation is such a vast cluster that some redundancies on lower levels are
not done anymore – if a computer breaks down, others will take over its
task. In such an application architecture, big-scale redundancy was de-
signed in up-front and one does not need to care about redundancies in
single nodes anymore. But this is an exception. Mission-critical applica-
tions, run by high-availability systems, are the target of this book and
they typically have not been designed as worldwide large-scale applica-
tion clusters, as Google is.

To handle these problems, it is sometimes necessary to fall back to an
earlier state in time. This implies that disaster recovery for some prob-
lem classes results in loss of data and therefore loss of work. Actually,
we have differing requirements here: for human and software errors, we
want a data and functionality state that is as close as possible to that of
the original system up and running in a short time. For physical environ-
ment errors that damaged or destroyed the whole server, we want fast
restoration of a previous consistent state.

To exemplify this further, a simple-minded online-mirrored system at
another site is appropriate for server environment problems, but not for
human or software errors since it would replicate the errors in classes
immediately and we could not access the needed previous state in a short
time.

Disaster recovery is only one piece for a total business continuity solu-
tion. However, for many businesses IT outages are among the most seri-
ous scenarios and protection against such cases is quite costly because of
the high degree of physical redundancy needed. (Even though it has to be
said that it is not as expensive as building a new plant of a manufacturing
company; we need to see the costs in relation to each other.)

10.3.2 Disaster-Recovery Scope

As stated in Sect. 4.1, the basic concept centers around the system stack
categorization, redundancy, robustness, and virtualization. The method-
ology is the same for high availability and disaster recovery. Our tools –
in particular, dependency diagrams – are the same too. For dependency
diagrams, we need to clarify where redundancy is used in the scope of
disaster recovery. To answer that, we need to know our project-specific
system stack first.
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Disaster recovery focuses on essential business functionality and the
minimum IT resources required for that. As disaster scenarios are not
a common case, it will usually not be necessary to provide redundancy
for full operations. Therefore some components might be declared out of
scope for disaster recovery. Other components are in scope; they may be
applications, computer systems, or whole sites. This section helps to iden-
tify the components of the project-specific system stack and their relation-
ship.

In a redundant setup, the dependencies between applications, sys-
tems, and sites will become very complex. Disruptions on application, sys-
tem, or site level will be as independent from each other as possible. A site
that is down, either because of a disaster or because of access problems,
e.g., from interruptions in WAN services, should not prevent continuation
of applications originally hosted at this site. This requires careful track-
ing of operative states.

For disaster-recovery planning, the central questions are:

• What needs to be protected (services/data)?
• Which failures are connected with which disaster?
• What essential functionality must stay operative with the highest pri-

ority?
• What functionality must be made available again as soon as possible?
• Which minimum IT resources are required for this?

From a strategic point of view, the answers to these questions follow busi-
ness demands.

From a technical point of view, however, it is not enough to know which
business services shall be protected or reestablished. The more extensive
the disaster is, the more possibilities exist as to which technical resources
are not available anymore and in which order functionality can be re-
stored.

Therefore, it is necessary to know which applications, servers, and
sites are relevant for which business service.

� Server Availability

To handle disaster recovery for servers, the following information should
be known about a server:

• Technical data: site location, architecture, capacity, maintenance con-
tracts.

• Which applications and infrastructure services are provided for which
business service?

• Which redundancy and failover solutions are available?
• Which backup strategies are available?
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� Application Availability

To handle disaster recovery for applications, the following information
should be known about an application:
• Which servers are involved for functionality of the application?
• For which business service is this application essential?
• Which other applications are needed for functionality?

� Site Availability

To handle disaster recovery for a site, the following information should be
known:
• Which servers are located on the site?
• Which high-availability solutions (redundancy, failovers) are avail-

able?
To control the disaster-recovery process, the information just listed should
be available. Preferably, it should also be available on paper – real-time
monitoring may be interrupted! An essential help is a dependency dia-
gram of the primary system that shows the dependencies between sites,
servers and applications. In addition, the primary system design has im-
portant information that is needed for our analysis.

In Chap. 2, we introduced the concepts of recovery time objective (RTO,
the time until the service should be usable again) and recovery point ob-
jective (RPO, the maximum data loss), which are used to specify require-
ments for disaster recovery. There we also introduced the basic classifi-
cation of mission-critical, business-important, business-foundation, and
business-edge systems and presented prototypical disaster-recovery re-
quirements for these categories in Table 2.2 on p. 28.

10.3.3 Primary and Disaster-Recovery Sites

Since many disaster scenarios include destruction of whole computing en-
vironments (large fire, natural disasters, plane crashes, etc.), redundant
components must be spread over wide areas, as noted already. In practice,
this means that whole disaster-recovery systems are placed at different
locations, the disaster-recovery site.

How far away the components must be placed, i.e., how far away the
disaster-recovery site must be from the primary site, is first of all an orga-
nizational decision: for many scenarios, a different building is sufficient,
but some installations will demand at least different parts of a city. Sepa-
rating the redundant systems further from each other, in different parts
of a country, or even in different countries, is very seldom needed.

Location and distance selection depends on the risks for that area. In
areas with known environmental risks – earthquakes in the San Fran-
cisco Bay area and in Japan, hurricanes in Florida, etc. – one is well ad-
vised to select a disaster-recovery site outside the risk area. For example,
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a business in San Francisco should not select a disaster-recovery site in
Berkeley. On the other hand, areas like Frankfurt in Germany have so
few environmental risks associated with them that it is possible to use a
disaster-recovery site in its vicinity.

We recommend that every such location analysis and decision is made
together with the business owner, to ensure the business requirements
are met and to achieve the best-value solution.

Besides those analyses that influence the environmental risk, an orga-
nizational decision must be made: How do we set up the disaster-recovery
system organization-wise, i.e., who owns our disaster-recovery site? There
are several possibilities:

One’s own disaster-recovery site: This is especially sensible for large
companies that run several data centers anyhow. Then disaster-re-
covery systems are placed in a data center abroad, and all systems,
installations, and data are under one’s control.

Reciprocal arrangements: Using another company’s equipment as the
disaster-recovery system and vice versa. This is an organizational ap-
proach to lower costs that is suitable for companies that have very
strong ties and close partnerships with each other anyhow.
Most of the processes and methods presented are valid in that ap-
proach, but one needs added prearrangements. In such a situation,
data security and privacy considerations are of particular importance,
as well as secure access. Most of the time this results in a cold-standby
approach, as it is usually not practical to operate a hot standby for
each other.

Outsourcing: Using another company’s equipment as disaster-recovery
systems. As with reciprocal arrangements, one has to pay attention to
data security, privacy, and access issues. But outsourcing companies
do not do this just for you alone, and have usually standard processes
in place to assure these conditions are met.

We have successfully established major outage scenarios that we need
to recover from, established the project-specific system stack, and defined
the scope of disaster recovery. Now it is time to look at the technical issues
and see the technical requirements that we shall fulfill and the ways that
we can fulfill them.

10.3.4 State Synchronization

Disaster recovery is concerned with setup, maintenance, and operation of
disaster-recovery systems at disaster-recovery sites, as already outlined
at the start of this chapter. To establish IT functionality on the disaster-
recovery system, the system must have all applications, necessary con-
figurations, and all data. Especially data from the primary system must
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Fig. 10.1. Possible realization of state synchronization. DR disaster recovery, OS
operating system

be available at the disaster-recovery system in a short time frame, other-
wise too much is lost. In the end, it boils down to our wanting to replicate
all changes from the primary system on the disaster-recovery system, so
that the disaster-recovery system is in the same state as the primary one.
In other words, we want state synchronization for data, installation, and
configuration.

If we take up the system stack model and look at Fig. 10.1, we see
that we can achieve our overall goal of state synchronization on all levels.
Usually, we have to select one (or a small number) of them as the base
target to implement redundancy.

In practice, state synchronization happens either on the operating sys-
tem level of volume managers and mirrored disk volumes or on higher
levels: many middleware servers (databases or application servers) pro-
vide replication functionality that can be utilized. Sometimes it is also
possible to replicate the configuration or data if it is stored in files.
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It is important to keep a consistent data state. For most data-keeping
systems, this implies that some kind of transaction support must be built
into the synchronization that achieves redundancy, otherwise a failover
would use inconsistent data. Many systems demand the properties atom-
icity, consistency, isolation, and durability (ACID) that we met in Sect. 7.2.
Enterprise-strength relational database management systems (RDBMS)
are usually used to supply them.

This implies that disaster-recovery architecture and implementation
must support failover of RDBMS operations. While this is straightfor-
ward to realize most of the time, mirroring of application data that is not
in an RDBMS is often much harder. A method is needed to check the data
for consistency and integrity, otherwise disk or application data mirror-
ing might start the disaster-recovery system in an inconsistent and un-
recoverable state, leading to software errors and crashes of the disaster-
recovery system.

Care must also be taken to ensure that the available network band-
width is sufficient to use the disaster-recovery system. While it is quite
clear from the start that the bandwidth must be large enough to synchro-
nize the redundant systems over a WAN, usage in the disaster case has
often higher bandwidth requirements. In fact, it must be ensured that
the application can be used over a WAN in practical situations, as many
applications do not take into account the special WAN environment with
high latency and low bandwidth. Network planning is an important part
of disaster-recovery implementation; we learned about that already in
Chap. 9.

Another important consideration is the requirement that the primary
system must not be affected by the synchronization. For once, this implies
that synchronous mirroring is usually not a good idea. If the disaster-
recovery system went down, the mirroring would wait for timeouts and
that would seriously interact with the availability of the primary sys-
tem. Asynchronous mirroring is as secure in data transmission within
our RPO requirements; it does so just with a small delay. But there are
other implications of that requirement too. For instance, the synchroniza-
tion process must not create too much load on the primary system either.

10.3.5 Shared System, Hot or Cold Standby

Since disasters are not expected to happen often, efficient resource us-
age is of interest. We have three basic types of disaster-recovery system
designs and these are also illustrated in Fig. 10.2 on the next page:

1. Shared systems, where all available systems are used and the work-
load is distributed differently in the case of problems.

2. Hot standby, where an unused disaster-recovery system is ready to
run all the time, and is kept on the same software, configuration, and
data level as the primary system.
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3. Cold standby, where an unused disaster-recovery system is avail-
able but is not up. In the case of a disaster, the disaster-recovery sys-
tem is restored from a backup system to an appropriate state and
started.

There are two subcategories of cold-standby disaster-recovery sys-
tems. The first one has systems where all the software needed is installed
already and only the data is missing. The second one uses completely un-
related systems, provisions them anew in the disaster-recovery case with
all necessary software and configurations, and then restores data from
a backup.

Design types 2 and 3 use dedicated disaster-recovery systems, while
design 1 deploys available active systems and provides for additional re-
sources, to be used for services in the case of disasters.

The actual usage of shared systems must be analyzed in detail. At
first, they appear to be the most efficient use for the money. But by defini-
tion, they have a component in common that manages the redundancy of
the primary and the disaster-recovery system. This management com-
ponent is almost always a single point of failure. In addition, shared
systems replicate all data changes immediately between primary and
disaster-recovery systems, and thus also replicate logical errors imme-
diately. If the disaster-recovery architecture is also to cover recovery from
logical data errors due to software failures or user errors, then shared
systems are typically not an appropriate solution.

It should be noted that hardware redundancy and hardware quality
are success factors that must not be underestimated. They might make
the difference if one has one incident per week or one incident per year.
It is not enough to simply go to a well-named vendor, as all vendors have
had their share of problems with certain model ranges. As outlined in
Sect. 5.7, it is good practice to keep statistics and information from past
experience available, and maybe to exchange them in user groups or other
forums.

Again, since disasters seldom occur, failover times (i.e., the time that
is needed to migrate services from a defective component to a functional
redundant one) may be in the range of hours or even days. It is seldom
that failover times in the minutes range are really needed. (By the way,
failover times in the seconds range are marketing propaganda anyhow
and do not include failure discovery time; they are almost impossible to
deliver even in ideal conditions.)

All this boils down to the fact that a design for disaster recovery is
a compromise between the financial expenditure (the cost includes sys-
tems, licenses, staff members, etc.) and the redundancy achieved. For
example, in the case of dedicated disaster-recovery systems, it is quite
common for one disaster-recovery system to be used for several primary
systems. This increases the complexity of the installation of course: since
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more than one primary system may have a problem at the same time
(in fact, that is a common scenario) we must make available all services
on the disaster-recovery system. In modern architectures, virtualization
technologies like domains or virtual hosts help us to segregate hardware
and operating system resources and make them available for separate
disaster cases.

To get better usage of computer resources, cold-standby systems can
be utilized as a test or a preproduction system, i.e., to analyze technical
problems or to stage new releases. Within limits, this can also be done on
hot-standby systems. There one needs the ability to turn off synchroniza-
tion and turn it on again later without problems.

10.3.6 Time to Recovery – Failback to the Primary Site

Before, we were reminded that RTO is the time requirement to continue
with a service on the disaster-recovery system. This may imply function-
ality restrictions and usually implies capacity and performance restric-
tions owing to nonidentical redundancy equipment. Depending on the im-
portance of the service, different disaster-recovery architectures may be
used that balance costs (for resources and activities to be provided before-
hand) with the failover time and related costs for service interruptions,
resources, and activities in the case of an event.

But it is not enough to look at RTO, i.e., at the time until the service
is available again, somehow. This first step just buys time for the second
step, the reestablishment of normal operations. This second step is often
called failback. The failback time needed to recover full functionality after
the disaster-recovery system went live, i.e., the time until everything runs
normally again, is the service recovery time. Figure 10.3 on the following
page illustrates that with a timeline and the relevant terms.

For physical disasters the service recovery time can be months, until
a new data center is available or the old one has been repaired. For dis-
asters that are caused by hardware errors, service recovery times range
from days to weeks. Recovery of full service after major outages caused
by software or human errors needs hours or days.

It is important to keep the service recovery time short too. There are
several reasons for this:

• Reduced capacity/performance
• Possibly reduced functionality (only essential services are available)
• Binding of resources
• Dangers of further damage
• Backup might be limited

Binding of resources addresses both equipment and human resources.
In a shared system architecture, primary and disaster-recovery systems
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are used all the time. During disaster recovery, disaster-recovery equip-
ment will have more load than usual. The equipment used for disaster-
recovery architectures will no longer be available for other purposes, most
importantly, not for other disaster-recovery situations. In standby archi-
tectures, human resources (i.e., skilled operating center staff) have to skip
regular work for setup and maintenance of disaster-recovery infrastruc-
ture, error analysis, and repair activities. This is especially true for “cold”
standby architectures, where the whole disaster-recovery system has to
be deployed at disaster-recovery time.

Even more problematic is the vulnerability during failover time. Nor-
mal operations include provision for failure: backups and redundancy ac-
tivities take place. These are usually not available during failover time
anymore. However, the normal danger of disasters still exists, maybe
even more so because the reason for the current disaster may still be
around. If, e.g., a software error causes data losses, switching to backup
data will help to keep up reading services, but providing full access may
also destroy the backup data. Also, people are more nervous, being un-
der pressure and in an unfamiliar situation, so the risk of human errors
increases.

It is important to consider backup during the system recovery time.
Since that time span might be weeks or even months, we cannot afford
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to spend that whole time without a working backup system. The best
solution is to place the backup system on the disaster-recovery site. This
has the advantage that backup data is not lost if the whole primary site
is destroyed. In addition, when we activate a disaster-recovery system
on the disaster-recovery site, it can still use it and do its backups. When
the backup system is placed on the primary site, one needs a disaster-
recovery solution for it as well, for those failure scenarios where the whole
primary site is destroyed or the backup system alone is destroyed.

The time frames for failover time are directly related to the disaster-
recovery architecture model and the amount of automatism used: shared
systems are the fastest; cold-standby systems will require most manual
activity and will therefore be the slowest.

With service recovery time, this is more complex. Assuming that the
actual repair times are the same for the different disaster-recovery archi-
tectures, the difference is caused by the task to failback from disaster-
recovery mode to normal mode. It also depends on the kind of service that
is provided during the failover time:

• A shared systems architecture will also have the techniques to add
a repaired component (site/system) back into the active state. It may
be assumed that with such an architecture, data does not have to be
updated on the repaired component, so the failover will be fast.

• A hot- or cold-standby architecture will probably hold modified data,
in which case time for data resynchronization will be needed. Resyn-
chronization means that local changes on the disaster-recovery system
are discarded and the same state as on the primary system is estab-
lished again. Furthermore, the disaster-recovery infrastructure must
probably be reconfigured into a default state, but this is not part of the
service recovery time anymore.

Table 10.2 on the next page illustrates the relation between design
categories, failover, and service recovery time. This table is not sufficient
to decide on the appropriate choice of those categories – at first, it looks as
if shared systems would always be better. But shared systems have other
deficiencies, as we outlined in Sect. 10.3.5.

10.4 Solutions

Any disaster-recovery system design depends on a key decision that is
bound to the basic RTO requirement that shall be fulfilled:

Immediate recovery refers to hot disaster-recovery systems where pro-
duction is switched within 1 day – this is the main focus on this book;
disaster recovery for mission-critical or important systems.
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Table 10.2. System design categories, failover, and service recovery time. + is a
positive, © a medium, and − a negative cost assessment. For those assessments,
we assume that a cold-standby system can be used for tests or as a staging system
in any case. We also assume that it is harder to use a hot-standby system for that
purpose

Design type
Failover

Time

Service
recovery

time

Low
cost

Risk
avoidance

Shared systems ++ ++ ++ −
Hot standby + © − ++
Cold standby − © © ©

Intermediate recovery between 1 and 3 days – this utilizes cold dis-
aster-recovery systems and is at the edge of our focus. Even though
many customers think they want faster recovery times, most often
they do not need them.

Gradual recovery after about 3 days or more – some of the architec-
tures described later do not use many resources and are therefore
specially fit for this approach.

Manual workarounds until repairs are done – this approach does not
fit into our scenarios of enterprise-class IT setups. While this is pos-
sible for a mom-and-pop shop, it is not a reasonable approach for
mission-critical or important systems.

It is our task to analyze the real business dependencies on IT pro-
cesses and their associated risks and costs. Only then can we settle on an
approach. Especially for larger companies, a one-size-fits-all approach is
not sensible either – it will either cost too much money when immediate
recovery is made for all systems or leave too much risk when intermediate
recovery is used for everything.

For each of these decisions, the approaches presented in the following
have differing quality properties. It is the job of project management and
architects to check the costs and work out an appropriate risk strategy.
Then an associate solution approach is chosen.

In any case and independent of the ownership of the disaster-recovery
site, there are a few standard solution approaches and important tech-
nologies that are used to realize disaster recovery. We will have a look at
them in the next few sections.

10.4.1 Metro Cluster

This solution approach is built around a high-availability cluster where
physical nodes are connected via a metropolitan area network (MAN).
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Most often, they are placed in different parts of a city; thus, the term
metro cluster was coined. Sometimes this system design is also called a
stretched cluster.

Metro clusters are sometimes marketed as the single solution for both
high availability and disaster recovery. This technology should cover both
minor and major outages and handle them both equally well. At first sight
that looks very good, but has very big pitfalls that one must know before
one implements this solution.

The first thing that we notice is that we have different requirements
for high availability and disaster recovery. While we want automatic pro-
tection against or recovery from minor outages, we prefer manual pro-
cesses to recover from major outages. Even a metro cluster has higher
risks associated with a switch to the disaster-recovery system; suddenly
the client access goes over a MAN and that raises the probability of fail-
ures and outages. Therefore disaster-recovery switches should be explic-
itly decided upon and not automatically triggered.

This main issue of this technology revolves around storage. Failover
clusters usually utilize redundant storage, i.e., mirrored disks, and as-
sume that all cluster nodes have equal access to all disk mirrors. This
means that writes are done synchronously and that reads are evenly
spread over all mirror volumes. If disk mirroring is now spread over two
sites as well, it must be assured that the increased latency and the higher
risk of connection outages do not lead to problems.

To realize that, one employs two storage systems. Data mirroring be-
tween those systems can be done by the storage subsystems themselves
or by the volume manager.

Mirroring with a volume manager is always done synchronously. This
has the big advantage that the disaster-recovery system always has a us-
able state on the disk when the primary system goes down and that func-
tionality can be achieved without additional software and thus without
additional license costs. Connection problems are handled by the volume
manager. But this needs timeout until the mirror is deactivated and one
has to activate it again after the connection problems have been resolved.
Of course, this is not a problem with the typical storage area network
(SAN) connection in a local cluster environment. But owing to the higher
outage probability of MAN connections, this case can happen more often
for metro clusters and is therefore a typical problem in such installations.

Mirroring functionality from storage subsystems is available both in
synchronous and in asynchronous form. Asynchronous mirroring allows
much larger distances than synchronous mirroring. That is the main rea-
son why this technology is used more often than mirroring by the volume
manager. This functionality is supplied by special software that must also
be integrated into the cluster, e.g., SRDF from EMC. The mirror volumes
do not have the same properties anymore; there is now a master volume
on the primary system and a slave volume on the disaster-recovery sys-
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tem. The slave volume can often not be accessed at all, or can just be
in read-only mode. When it must be activated in the disaster case, the
storage system has to be reconfigured to allow write access, introducing
another complication that may lead to failure.

To make that reconfiguration less risky, an alternative system design
is used from time to time. On the primary site there is an active/active
cluster, with a third passive node on the disaster-recovery site. Service
switches are preferably done between the two active nodes; the passive
node is only used when both active nodes are not available anymore.
There are two storage subsystems that mirror themselves; the disaster-
recovery system is read-only. The third (passive) cluster node has a pre-
pared configuration for read-write access to the disaster-recovery storage
subsystem. Such reconfiguration has no consequences for the preferred
cluster nodes on the primary site.

The problem with latency and disk access has been mentioned already.
In practice this is not a problem with dark fiber connections up to a dis-
tance of 100 km (cable length). Then we can achieve latencies of 0.5 μs,
which is sufficient for synchronous mirroring too. For other connection
technologies and larger distances, one needs to check the latency from
case to case. When the latency gets much higher, one must resort to asyn-
chronous mirroring by storage subsystems.

Usually cluster software also does not take the MAN connection for
heartbeat reliability. It is very hard to establish a reliable WAN connec-
tion with a guaranteed quality of service needed for the heartbeat tests
but also for service availability tests. In metro cluster designs, the split
brain syndrome must be prevented, where both sites think they are alive
alone and both are automatically activated to provide the services to the
end user.

In the end, larger distances between cluster nodes always decrease re-
liability and accessibility for the whole cluster. Owing to the inherent re-
duced network reliability and increased latency, the chances of unneeded
failovers occurring are higher. Operations will require more effort: one
needs longer to locate error causes and do repairs. This must be taken
into account when a metro cluster is used in a system design. On the pos-
itive side, RTO and RPO are extremely short, which can be an advantage
that recompenses for the disadvantages explained before.

Nevertheless, we must not ignore the fact that a metro cluster is only
a very restricted solution for disaster recovery as it does not cover many
failure scenarios. When an application or a human error occurs, it cannot
be undone. That error is mirrored to the disaster-recovery site immedi-
ately. Restoration from the backup is the typical strategy for such errors
in this architecture.

This failure scenario must be emphasized because it is obvious but
often ignored. Metro clusters provide redundancy for a range of failure
scenarios, but application, user, and administration errors are not among
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them. The cluster itself is another single point of failure in that system
design: any error will cause the whole system to fail.

10.4.2 Fast Restore

The disaster-recovery site is located netwise near the backup server.
In the disaster-recovery case, applications and user data are restored.
Typical restoration speeds are 20–300 MB/s today. This depends on the
restoration infrastructure (striping over multiple parallel tapes) and the
backup data types (databases may be restored much faster than file hier-
archies).

Thus typical restoration times for 1 TB are about 1 h; outage times
will be considerable higher. On the other hand, this disaster-recovery ar-
chitecture is the cheapest one: the backup infrastructure must be in place
anyhow. If one plans in advance, spare machines are either available as
cold standbys or may often be organized very quickly. But without such
a plan, chaos is certain to ensue in the disaster case. Thorough testing is
needed for this architecture: it must be assured that the service is func-
tional after restoration. While restoring data and application software
is easy, restoring the application’s configuration in such a way that the
disaster-recovery system can be operated must be described precisely in
a process description. Otherwise the stress of a disaster-recovery case will
surely cause errors during setup of the disaster-recovery system.

The big disadvantage of this architecture is that lots of work is lost in
a disaster-recovery case. Typical backup intervals are daily, so the work of
all users for the current day is lost. In addition, it means that users can-
not work during restoration times; therefore this architecture must not
be used for mission-critical applications where nonaccessibility of data
and applications may severely endanger a company.

If an application or environment error is detected on the same day,
fast restoration is the most often utilized technique to restore data and
applications to a known working state.

10.4.3 Application-Level or Middleware-Level Clustering

Middleware clusters can rarely be used for disaster recovery. Databases,
application servers, and other middleware components have their own
clustering capabilities, and these were introduced in Chap. 7. An obvious
idea would be to use these clusters in a MAN, just like we do with metro
clusters. But compared with failover clusters, middleware clusters have
very high demands on the availability of the intercluster connection that
cannot be fulfilled reliably by MANs.

Application-level clustering is different if it is programmed from the
start to support MAN or even WAN connections. A distributed system
is likely to survive in the unfriendly operating environments of today’s
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global networks. But sadly, there are very few such applications around,
and the chances meeting some of them in normal projects are almost
nonexistent.

10.4.4 Application Data Mirroring

As explained in Sect. 7.2, databases create redo logs to handle errors in
transactions and to guarantee durability for their data. One can ship redo
logs and replay them on a disaster-recovery system. One can also stop re-
playing at arbitrary times. If an application or environment error caused
erroneous data deletion or alteration, replaying the redo logs that caused
the problem can be skipped.

If applications store their data in files, these files may be synchro-
nized. Synchronization tools like rsync handle incremental synchroniza-
tion and give some freedom to choose synchronization intervals. Intervals
may be in the hours range because it is problematic to synchronize file
data storage with a lag of minutes: the synchronization process needs to
determine the state of the file system both at the primary site and at the
disaster-recovery site, and the files must be copied. This alone normally
takes several minutes, maybe even hours. File synchronization is also not
possible if the application keeps the files open; most often they are not in
a consistent state then.

When disaster recovery is based on application-level data synchro-
nization, the problem of application software and configuration mirror-
ing remains. Automation of software mirroring is done easily, but often
messes up release management. Software deployment is usually based on
packaging systems, where a package database holds information about
installed software and local changes. If we simply copy software files
around, the package database and the software files become inconsistent.
This might wreak havoc if automated patch management is be used be-
cause patch management often relies on a consistent package installation
database.

Automation of configuration mirroring is even harder: configuration
files often include data that is system-specific, like IP addresses and host
names. They must be adapted to the disaster-recovery system.

Database Redo-Log Shipping

Databases are the backbone technology that stores most mission-critical
structured data of any company. Most disaster-recovery projects will have
to cope with database continuity. Since databases are quite large, restora-
tion times from backup are often not sufficient. In addition, one needs all
changes from the backup time until the disaster happened – daily snap-
shots are not enough for the target systems that we are handling here.



10.4 Solutions 311

For disaster recovery of databases, most databases have a facility
called log shipping or redo-log shipping. This allows database change
logs to be transferred to a remote site where they can be “replayed” on
a standby database. Database log shipping is based on the transactional
behavior of RDBMSs that will keep logs about any committed changes to
enable recovery in the case of crashes. Often, these logs are also used for
incremental backups.

Ideally, logs may be changed manually before replay. If, for exam-
ple, a database software error caused an inconsistency in the database,
one could first discard the transaction that triggered the software error,
before starting the replay to instantiate the disaster-recovery database.
Of course, to be able to do this, one needs a database instance where the
transaction can be replayed. Since such errors (by software or users) may
need some time to be noticed, it is prudent to keep backups of the data-
base and of all replay logs; thus, one can step back in time and repair the
problem.

Database log shipping has also several variants:

Archive-log shipping is the method where logs are not transferred in
real time, but in batches. With many database systems, redo logs can-
not be accessed arbitrarily or in real time, as they are stored in an in-
ternal data area. After some time, or after some log amount has been
reached, an archive event triggers an action, usually a command. The
log data that have been collected between the last archive event and
this one are made available as input for that action. The log data can
now be transferred to the disaster-recovery site.
Since log data area sizes are quite large, usually in the range of sev-
eral hundred megabytes, archive log shipping can still lead to lots
of data loss. For mission-critical data, this might not be acceptable –
a few hundred megabytes of order data can be worth millions of dol-
lars or euros.

Redo shipping accesses the redo logs as they are written and trans-
fers them immediately. In some database products, this is an inher-
ent database feature, and comes both in synchronous and in asyn-
chronous form. For disaster recovery, synchronous log transfer is
most often not appropriate, as the primary site waits for success-
ful transferal until the transaction has been successfully committed
and the network latency might reduce the resulting performance in
a nonacceptable way. For other database products, redo shipping is
only available through third-party software or must be realized with
self-written scripts.

Figure 10.4 on the following page summarizes the options for database
log shipping; it uses Oracle’s Data Guard realization for illustration.

Speaking of products like Oracle’s Data Guard, it is time to present
a selection of major database products that support log shipping in any
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variant. Of course, more database products exist that have this function-
ality as well. This selection has been made to give an impression about
representative functionality that you can buy right now.

Oracle has featured log shipping as a replication method for disaster
recovery for a long time. Up to Oracle 8i archive log shipping was sup-
ported; redo shipping needed special home-written scripts or third-party
software. Since Oracle 9i, redo shipping is integrated into core functional-
ity where the log writer facility (LGWR) transfers the logs immediately to
the disaster-recovery site. To support both LAN and WAN architectures,
redo shipping can be synchronous (LGWR waits for arrival of redo logs at
the disaster-recovery site) or asynchronous (LGWR does not wait).

Oracle packages log shipping into an Oracle product, Data Guard, that
also supports switching the role of primary and disaster-recovery data-
bases. That feature is important to keep the service recovery time short:
when a failover to the disaster-recovery system happened and the pri-
mary system has been repaired, Data Guard can be used to replicate the
now-changed data from the disaster-recovery system back on the primary
system.

IBM DB2 Universal Database has a high-availability disaster-recovery
(HADR) feature that provides the same functionality as Oracle’s Data
Guard. The focus of this feature is recovery from physical disasters. In
the case of logical disasters (e.g., administrative or software errors) one
should be careful and should not use the automated failover procedures,
otherwise these errors will be replicated on the disaster-recovery system
as well.

Microsoft SQL Server has supported integrated archive log shipping
since SQL Server 2000. Self-made solutions were available with earlier
versions. No information is available about redo shipping support.

MySQL also supports archive log shipping. It writes logs as the basis
for incremental backup, which is effectively redo logs. These logs may
be shipped to the disaster-recovery site and replayed. With appropriate
caution, it is possible to realize redo shipping too.

File Mirroring

Still much data is kept in files and stored on file servers. That is par-
ticularly true if it is application data with a deep structure or it is un-
structured data, like Office documents. In both cases, current database
technology does not provide enterprise-strength data storage, and special
storage capabilities are realized with files.

Configuration files are a different matter as they are often specific to
a system. They should not be handled by the methods described in the
following; we will come back to them in Sect. 10.4.6.

Figure 10.5 on the next page illustrates the difference between file
replication on the disk level (see Sect. 10.4.5) and file mirroring as pre-
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sented here. While disk mirroring also replicates file data, it does not
involve higher levels of the system stack. In fact, disk mirroring does not
even know about files, it just replicates changes to blocks on disk volumes.
Therefore no structure-related action can be integrated into disk mirror-
ing, as we will do with file mirroring. In particular, the “delayed replay
of logical changes” feature is not possible with disk mirroring – but this
feature is essential for our strategy to cope with logical disasters.

For disaster recovery, all changes in a file system on the primary sys-
tem must be replicated on the disaster-recovery system. Such changes
include file creation, file change, metadata change (ownership, access
rights, modification time), and deletion. Please note that some operating
systems make it hard to replicate certain metadata; in particular, access
time. If access time is needed for management or within the application,
that is an additional burden. Luckily, such applications are very few.

The data change rate and the number of files at the primary site de-
termine the replication frequency. The files must be scanned to check for
changes and that needs time, both CPU time and real time. If a scan of a
whole file system needs 2–4 h (and that is not unreasonable), we cannot
have a replication frequency of 1 h. We only need unidirectional mirror-
ing, not bidirectional synchronization.

Replication must have transactional semantics – either it is successful
or it is aborted without remains. We do not want half-copied files; if some
file copy does not succeed, it should be discarded, the old version should
be kept and must be retried again in the future. Replication of changes
might not succeed for several reasons; in particular, the source file might
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be locked, preventing access. There is also the problem of propagating
changes to files that are opened by an application and are changing all the
time, not being in a consistent state. These files must be seen as database
files and one must find a way to replicate their content on the application
level, e.g., by a procedure that is analogous to database log shipping.

To enable replication, either all changes must be recorded (related to
the last replication time) or a complete inventory of existing files must
be compared against the state of the disaster-recovery system. Both ap-
proaches have their problems: recording changes as they happen is only
seldom used, and taking inventory of several terabytes of file space will
need quite some I/O and computing resources. But it is mandatory that
the performance of the primary site is not impacted for end users. Also
transfer of files over the network might be bandwidth-intensive; that
bandwidth is not available for primary usage and needs to be taken into
account. Several protocols exist for transferring only changed parts of
files, and in compressed form, to save network capacity that is needed
elsewhere at the expense of CPU usage.

File mirroring can also be used to prevent accidental change or dele-
tion of files, as shown in Fig. 10.6 on the following page. Then, deletions
are deferred, deleted files are put into a “trash can area” first, and this is
cleaned up at a later time. A similar thing is done with changed files: old
version are placed in a backup area when new versions are replicated.
Backup of metadata changes is also possible, though often overlooked.
Of course, this implies the need for a retention policy that explicates when
old file versions are eventually discarded – time-based, generation-based,
or a mixture of both.

It might be necessary to do encrypted file transfers; this depends on
the application and the data type. If the data is confidential and if the
application does not leak data, file mirroring must not happen without
encryption. It is not necessary for this capability to be part of the file
mirroring product itself. Instead, it can be supplied by a Secure Sockets
Layer (SSL) tunnel or a Secure Shell (SSH) tunnel, or by a virtual private
network (VPN) that is established for the mirroring.

� Products

Vendor-supplied tools for products are very primitive and do not fulfill
the requirements already set out. The most well known tools are rdist, a
standard tool in any Unix environment, and RoboCopy from Microsoft’s
Windows Resource Kit. Both are very basic, are only capable of actual
file mirroring, and provide no additional functionality as described be-
fore. Their usage for mission-critical environments should be seriously
analyzed and questioned.

The current UNIX standard for file synchronization is the open-source
tool rsync. It is available for Windows as well. It does file and metadata
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replication, with bandwidth limitation and partial file transfers. Backup
of deletion and changes can be made, but only for one generation, and
no tool-inherent retention support is available. Both encrypted and unen-
crypted transfer protocols are available. rsync is a tool that compares the
state of the primary site with that of the disaster-recovery site up-front,
and then does the replication. But rsync also needs quite some system re-
sources to build the file list, which might reduce primary site performance
if I/O capacity is not sufficient.

In a Unix environment, it is possible to create a script-based solution
that builds on rsync and adds the missing features (mostly multiversion
backups, trash cans, and retention policies). Such scripts have been built
multiple times in corporate environments, but none of them are known to
be marketed as products or available as open-source tools.
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For Windows, lots of commercial products are available that provide
file synchronization.

10.4.5 Disk Mirroring

Disk mirroring is used in most disaster-recovery products. It only protects
against hardware errors, as long as they do not occur on redundant disks
at the same time. Any errors in the operating system or the application
or user errors will be reproduced faithfully. This means that the disas-
ter scenario of file corruption or mass deletions will simply be replicated
at the disaster-recovery site. Therefore disk mirroring is appropriate for
recovering from physical disasters, but not from logical ones.

Disk mirroring traditionally is used in local configurations, i.e., in
one system where the disks are connected to the same bus. Therefore,
most mirroring software assumes direct accessibility of storage and im-
plements synchronous behavior. When a data item is written, the write
operation is only successful if it could be written to all mirror partitions.
Reading data from mirrored disks is usually done by arbitrary reads from
any mirror partition. If disk mirroring is done to a disaster-recovery site,
latency will often be too high for this assumption.

Disk mirroring software that we can use for disaster recovery must
consider the case of higher latency and must work in this circumstance.
While many applications work with asynchronous I/O, important appli-
cation classes use only synchronous or direct I/O, or they synchronize the
written data at the end of their operations. The timing behavior of mirror-
ing must not be overlooked: long write times may influence directly user
performance. Since reads from the local mirror partition will be much
faster than reads from a remote disaster-recovery site, an equal distribu-
tion of read requests to all mirror partitions is not sensible anymore.

Special disk mirroring software for disaster recovery takes these re-
quirements into consideration and provides the ability of a remote slave
copy that is not read from during normal operations from the primary sys-
tem. This slave copy might be accessed read-only by the disaster-recovery
system though. Figure 10.7 on the next page illustrates those properties.

With all these cautious remarks in mind, disk mirroring is one of the
easiest disaster-recovery technologies to implement. It is independent of
applications and does not require changes in architectures if done prop-
erly. Many current proprietary disaster-recovery offerings are based on
disk mirroring.

10.4.6 Matching Configuration Changes

System, middleware, and application configurations may include loca-
tion-dependent information. They also are adapted to the set of services
that run on a machine. If a system is moved to the disaster-recovery site,
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the configuration must be adapted. It is rare that 1 : 1 copying is possi-
ble. Location-dependent information like IP addresses must be updated,
differences in available software must be accommodated, infrastructure
services like routing, DNS servers, etc., might be different, and interde-
pendences on other services that run on the disaster-recovery host must
be considered.

Virtual hosts, as explained before, help to minimize the necessary
changes. They provide isolation, and allow concentration on location-
specific differences as they are not different from other services anymore.
If the primary system is a failover cluster, the high-availability function-
ality might be of interest for the disaster-recovery system as well. Then,
the disaster-recovery system can be configured as a single-node failover
cluster, and can be turned on and moved around at will. The costs of
failover cluster software might inhibit such an architecture though.

In many cases, configuration changes are propagated manually. If
a disaster-recovery architecture selects this approach, it must specify
regular audits that check if the configurations of primary and disaster-
recovery sites are still consistent.

10.5 Disaster-Recovery Tests

Disaster-recovery tests are important, but hard to do properly and are
very unpopular. To get full confidence, one has to shut down the pri-
mary system, get the disaster-recovery system up, and really use it. It
is straightforward to test functionality, though one has to take care. It
is much harder to test if the disaster-recovery system provides adequate
performance. Most often, the disaster-recovery system is smaller than the
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primary system, as one cannot afford to spend all one’s money on a same-
sized hot-standby system. In the case of disasters, the users will surely
accept lower performance – but often it is not possible to test that this
lower performance is sufficient.

In addition, being off-site means that the network connection from
clients to servers will not be the same; Section 9.1.6 discusses network
designs for disaster recovery in detail.

Many businesses do not want to spend the effort for such thorough
tests. In particular, the downtime of the primary system for disaster-
recovery testing is a big issue if the system is usually used outside busi-
ness hours as well. Therefore, narrowed test scenarios are often used.
Then, the disaster-recovery system is activated in a virtual LAN (VLAN)
or in a special laboratory environment, where also test clients are avail-
able. Measurements taken before are used to establish a typical workload
pattern with the test clients to test capacity and latency.

Table 10.3 on the following page has more information on different
test approaches that boil down to three categories.

1. Hot simulation/fire drill: No IT system will be touched in this step.
Document-recovery procedures are walked through; it is checked if all
people have all the required resources and information that they will
need in a disaster case.

2. Single component: A single system is turned on and used on a re-
stricted basis, mainly for functional tests.

3. Complete environment: The primary systems are turned off and
all disaster-recovery systems are turned on.

Narrowed test scenarios have their risks. If the network split was
not done correctly for a single component test, or if some error was
made in disaster-recovery system configuration, the test clients might
access partly the primary system. This could result in changing partly
the disaster-recovery system’s data and partly the primary system’s data
– which could lead to a disaster without functional backup itself being
available. After all, our focus is on mission-critical services that must not
be changed in an uncontrolled and in an inconsistent way.

Tests may also imply that the primary system’s configuration must
be changed. If synchronization is controlled on the primary system, there
may be the need to turn it off during tests, otherwise lots of errors would
occur at the primary system.

10.5.1 Test Goals and Categories

Disaster-recovery tests have two fundamental components.

1. Initial testing is important to verify the disaster recovery concept
which was developed theoretically.
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Table 10.3. Scope and objectives of test categories

Test Requirements/scope Result/outcome

Hot
simulation

Requires limited preplanning
Limited in scope and

involvement
Can be conducted at any time

and at any location

Verification of
disaster-recovery process

Review existing
disaster-recovery
documentation (process and
templates)

Train on disaster-recovery
procedure

Single
component
of disaster-
recovery
system

Requires extensive
preplanning

Requires the reservation of
resources (IT staff, business
owner, vendors)

Requires verification of results
Function restoration type test

Many components realize an
IT service; a single failed
component is restored

A controlled recovery

Complete
disaster-
recovery
system (all
compo-
nents)

Requires extensive
preplanning

Requires the reservation of
resources (IT staff, business
owner, vendors)

Requires verification of results

The restoration of an entire
business function from user
input through return of
final product to the user, at
any point in time

As close as you can get to a
real recovery

2. Regular testing of a disaster-recovery solution is required for ongoing
validation of the disaster-recovery environment and training on the
disaster-recovery procedures to be prepared for a disaster.

These are different goals that we want to achieve. A complete disaster-
recovery test should take place annually, while other tests can and should
be scheduled more often, in particular the hot simulation. For example,
hot simulations may be done three times a year, and single components
are tested in simulation mode (see later) biannually. Disaster-recovery
tests are also necessary after major changes.

For all disaster-recovery test cases the main issue is to ensure no im-
pact on the productive site. For a hot simulation, there is no problem. But
when we turn on the disaster-recovery system, be it a complete system or
a just a single system, no client must access this disaster-recovery system
in the belief that this is real. The primary system must not be made unus-
able involuntarily either, e.g., owing to activation of the same IP address
in the same LAN segment.

Therefore extensive preplanning is required for all tests that involve
activation of services. There is also the choice to run a single component
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test in simulation mode: the services are activated, but on test addresses
and not on the primary service addresses and are tested on a basic level.
This still has the high risk associated with it that we described before:
one must make sure that really no conflicting resources are activated, and
that the clients must not mix accesses to the primary and the disaster-
recovery systems. For example, if a client accessed a disaster-recovery
database and changed application files on the primary system, the appli-
cation’s data state might become inconsistent.

Yet another possibility is available if the disaster-recovery system is
the same size as the primary system. Then we can switch to the disaster-
recovery system and use that for production. Now we will see if the
disaster-recovery system is really up to par.1 After some days, one is ready
to do the failback to the primary system and can test this process as well.

For basic functionality tests, one can simulate clients though. For ex-
ample, one can trace which SQL requests are made by a client or which
remote file accesses. Then we can activate the disaster-recovery system
with a test address and access the database with an SQL client, issuing
appropriate SQL commands, or we can access files the same way as the
application does. If these accesses succeed, we have raised our confidence
that application clients would be able to issue the same requests consider-
ably. Such tests can be automated and are considered a kind of low-level
monitoring for disaster-recovery system functionality that can be realized
in an on-going and cheap way.

10.5.2 Organizational Test Context

The tests must involve the business owner. Not only technical steps
should be tested, but the whole process, from problem detection to disas-
ter declaration to failover and informing end users about changing work
processes because unimportant systems are not available anymore. IT de-
partments and business owners should discuss and agree together on a
test date. Regulations like SOX and Basel II sometimes enforce regular
disaster-recovery tests; one needs to pay attention to them.

All parties to that decision process are often well aware of the risks
that are inherent in disaster-recovery tests; therefore, the business owner
sometimes does not want the tests or wants modified tests that are
enough to raise his or her confidence, but which are not real-scenario
tests. Many IT staff members, especially those from the administration
and operation teams, do not like those tests either: they are costly, are
usually made off-hours and on weekends; abandoning the tests saves ef-
fort and money. There is a real danger that this will lead to a disaster in

1 Well, this does not guarantee 100% disaster-recovery functionality. The net-
work might be damaged as well in the case of a physical disaster and this is
not the case in such a disaster-recovery test.
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the disaster case; when the failover to the disaster-recovery system sud-
denly does not work, or when the performance is not only reduced, but
unusable, etc. Even though disaster-recovery tests are not urgent, they
are important.

When failover to the disaster-recovery system is successful, functional
regression tests can make sure that the applications are working at the
disaster-recovery system. As outlined before, performance tests can be
made with the help of workload generators. This is not a simple issue:
finding or constructing a good workload generator for an application is
a challenge in itself. If one can emulate a proper workload, testing latency
(are answers fast enough) and capacity (how many people can work with
acceptable answer times) are the most important issues.

Since tests will change the disaster-recovery system’s data, there is
the need to synchronize data and sometimes even the application config-
uration back to the primary system’s state. This is called resynchroniza-
tion. During testing and resynchronization, no disaster-recovery capabil-
ity is available, so it should be done quickly. Ideally, resynchronization is
done automatically, without human intervention.

10.5.3 Quality Characteristics

Being able to test a disaster-recovery installation properly is a distin-
guishing mark that tells about the quality of a system design. Facets of
that quality are:

• Being able to activate the disaster-recovery system for a test while the
primary system is still active

• Being able to activate only one component on the disaster-recovery
system; i.e., doing a component disaster-recovery test, or even doing
disaster recovery for just this component in the case of a logical disas-
ter

• Either no or very few changes are necessary on the primary system
for tests

• Workload generator, regression tests, and test metrics are available
• Primary system downtime is not needed.
• A short time frame for resynchronization, after the test
• Business owner buy-in (suitability for business and IT processes)

10.6 Holistic View – What Is Needed Besides
Technology?

This book would be incomplete if we did not also point out that many more
activities must be taken into account during disaster-recovery planning.



10.6 Holistic View – What Is Needed Besides Technology? 323

If a serious disaster happens, very often nothing works anymore. Not
just one server is affected, but a whole site does not work anymore. Then
concerned and untroubled activity is needed to establish functionality of
the disaster-recovery systems at the disaster-recovery site as soon as pos-
sible. These incident management activities must be planned and pre-
pared in advance, otherwise chaos and hectic are preprogrammed and
the setup time will be longer by magnitudes.

10.6.1 Command Center and War Room

Disaster-recovery planning must include the setup of a disaster command
center for the disaster case. This command center is a ”war room” and
associated infrastructure at the disaster-recovery site. All relevant people
will meet in person at this command center, and the command center’s
infrastructure will be the most important one to be brought on-line first.

It is important that the war room has a noncomputer infrastructure
as well. Availability of a whiteboard and several flip charts is mandatory;
board markers must not be forgotten too. Make yourself clear that the
network or any other computer besides your local laptop might not work
in the first few hours – you are without a network, without DNS, without
Internet access to your information, without most planning help. “Man-
agement on walls” – pasting paper sheets with important information on
walls – is still the most robust method to keep all people in the command
center up to date with current developments.

Room allocation should be part of the disaster-recovery tests. We
should never trust that something “just will happen,” like a room will
“just be available.” Instead, we have to try it out to see if it really works.

10.6.2 Disaster-Recovery Emergency Pack

We mentioned this in the previous section: you must be prepared for
the computer equipment at the disaster-recovery site not working in the
first few hours. Most often, these are network and infrastructure prob-
lems where your network colleagues will be fully active themselves to
restore services. Lots of our computers depend on available domain con-
trollers, file servers, name servers, etc., where also the relevant informa-
tion needed to restore the services is stored.

In particular, system information is crucial. Many IT shops establish
a configuration management database (CMDB) that helps with our day-
to-day activities by providing up-to-date information about computer sys-
tems and changes. But do not rely on that information resource being
online or accessible when you are struck by a disaster. Print out your es-
sential information (names, contacts, process flows) and burn technical
information on CD (CMDB, system documentation), and put everything
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Table 10.4. Content list of an Emergency Pack. DR disaster recovery

Information Contacts for supplier, partners, vendors
Logical and physical network plans
System documentation for DR systems

(with current software and patch versions)

Process descriptions Roles and responsibilities
Internal escalation procedure
General disaster-recovery procedures
System-specific disaster-recovery procedures

Templates Analyze environment
Contact list, roles, and responsibilities

into an executive case, and bring that Emergency Pack with you, to have
all necessary information in the war room.

Another item for the Emergency Pack is document templates, i.e., form
sheets that name the most important information that must be gathered
during the first stages of disaster recovery. Again, it is a good idea to
have such templates on paper and pin them on the wall. Alternatively,
one could edit them on a local laptop – but then its content cannot be
easily shared with the rest of the disaster-recovery team.

10.7 A Prototypical Disaster-Recovery Project

This section will present a prototypical disaster-recovery project that can
be reused in many circumstances. It has been used successfully in many
environments and covers the most common failure scenarios. This design
can be used by you as well, with relatively small changes.

The goal of this section is to show you how the theoretical approach of
the previous sections is filled with life. Here is a description of an exem-
plary disaster recovery for an IT service, a complete blueprint that can be
cloned and adapted for your purposes.

The design has a few up-front assumptions that are quite common:

IT service exists already. Disaster recovery shall be established for an
IT service that exists already.

Disaster recovery is established by a project. A team of people will
work together to establish disaster recovery. They create the archi-
tecture, implement the solution, and test it. This team will then be
dissolved and responsibility for the ongoing work will rest with the
operations and administration staff.

High availability is not a topic. One does not need to design or realize
high availability for the IT service; that has already been done.
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Failure scenarios are identified. Since high availability has been re-
alized before, failure scenarios are already available. The disaster-
recovery project is concerned with establishing recovery for some fail-
ure scenarios that were classified as not applicable before.

Disaster recovery for the whole primary site is not a topic.
Please take note because this is important: this blueprint does not de-
scribe overall disaster recovery for a whole site. Instead it focuses on
disaster recovery for one IT service with its components and subser-
vices.

In the design, we follow roughly the approach from Sect. 10.2. Differ-
ences are mainly due to the fact that we do not have to work out failure
scenarios anymore:

System identification is done in Sect. 10.7.1, where we analyze the ex-
isting primary site. This will give us an overview of systems, available
services, and dependencies.

Business requirements and project goals are described next,
in Sect. 10.7.2.

Conceptual design is concerned with the disaster-recovery business
view and the organizational approach used for realization of disaster
recovery, and is described in Sect. 10.7.3.

System design of our blueprint presents the solutions that are used to
realize disaster recovery for all our systems and services, and is cov-
ered in Sect. 10.7.4.

Implementation is described in Sect. 10.7.5 and will dive deep into
technical details.

Processes for failover and for tests are the topic of Sect. 10.8. There we
will build on this prototypical design and will present actual proce-
dures for switching (both from the primary system to the disaster-
recovery system and back) and for testing.

To get our feet on the ground, we will make specific technical assump-
tions about products and protocols and present them as a scenario that is
representative of many installations. They are a remedy to formulate spe-
cific procedures, but are actually not relevant to the design: other prod-
ucts or other configurations will have equivalent capabilities, but the ba-
sic approach can be migrated easily.

We describe disaster recovery for a client/server system. Multi-tier ar-
chitectures with application servers are also used often. While they are
not covered on the surface, disaster recovery for an application server is
almost identical to that for a Web server; both have no persistent state
associated with them, and software and configuration must be kept con-
sistent between redundant systems.
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10.7.1 System Identification – the Primary Site

The IT service is realized by file servers, a database server, and Web serv-
ers. Figure 10.8 illustrates these servers. The IT service provides a busi-
ness function for one department; there is one business owner who is easy
to identify.

The bulk of application data is stored on Unix file servers. The applica-
tions are not long-running services that keep their files open all the time.
Instead they are our typical run-of-the-mill applications that take some
files, change them, and write them back. Clients access the files via Net-
work File System (NFS) if the user has a Unix workstation; access from
Windows desktops utilizes Common Internet File System (CIFS). The file
server provides both access methods: NFS is native to Unix, CIFS is real-
ized by Samba.

Some application data is structured and stored in a database. Pro-
grams on the client systems access that database server directly. To sup-
ply factual information, we will assume that Oracle is used as database
product and provide specific technical information; other database prod-
ucts have similar procedures and capabilities.

Another access method for data is via a Web interface, i.e., a Web-
based application where the user interface is accessed by a Web browser.
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The application on the Web server accesses both files and the database
directly.

Besides those services that are used by engineers, some infrastructure
services are needed as well: none of those servers can be accessed without
a functional network, and none of them will run without DNS. In addi-
tion, the applications cannot be used without licenses that are managed
by license servers. For login, a running authentication service is needed
which we assume to be LDAP-based without loss of generality.

All servers on the primary site are run in a high-availability environ-
ment, e.g., the file server utilizes a failover cluster. We will look at each
server in more detail later.

On the file server, nightly jobs are active, e.g., files are transformed
in batches, cleanup activities, etc. These jobs are aware of the high-
availability environment, e.g., they are activated on all physical nodes
of the cluster and check that the respective service is active before they
run.

Backup is realized by Tivoli Storage Manager (TSM).2 The TSM in-
stallation is distributed over the primary site and the disaster-recovery
site. The TSM server at the disaster-recovery site does the backup of pri-
mary systems, and vice versa.

So, let us have a more detailed look at the servers and the infrastruc-
ture. We will list each system component, in turn:

• File server
• Oracle database server
• Web server
• Operating system configuration
• Infrastructure
• Related systems that are not on the primary site

For each of those components, we will look at its functionality and its
requirements. Finally, we will have the dependency diagram. This will
provide the information that is needed to plan the disaster-recovery sys-
tem.

File Servers

Application data files are accessed via NFS (Unix file sharing) and CIFS
(Windows file sharing). Several servers are run in an active/active failover
cluster configuration, when a service needs to be switched the other clus-
ter node runs two services. For NFS and CIFS services, this is acceptable.
The clients will experience a performance impact, but the service will still
function.
2 Again, any other enterprise-class backup product could appear here instead.
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A typical server configuration for such a file server has multiple CPUs,
several gigabytes of main memory, and serves 10 TB of data. The data
itself is stored on an external storage subsystem (e.g., from EMC).

All data is kept mirrored, i.e., the storage is configured as Raid10:
mirrored and striped. Each stripe is spread over eight disks (these are
four mirrored volumes); with a disk size of 146 GB this results in a LUN
size of 300 GB.

This configuration is done on the storage system and not with the
host’s volume manager. It reduces the number of LUNs or the number
of device files; this additional abstraction reduces complexity on the host
side. The hosts should be able to access these virtual storage devices via
several access paths; for greater redundancy, software drivers for such a
feature must support it both on the storage subsystem and on the host.
Usage of such storage management software often adds additional com-
plexity and reduces robustness. For example, with PowerPath from EMC,
every LUN exists several times as a device file; this seriously increases
boot times, etc.

We mention this in this chapter, since the primary system configura-
tion should be optimized to make disaster-recovery system configuration
easier and more robust. Having very few LUNs has the advantage that
there will be a smaller potential for conflicts, when several of the file serv-
ers are migrated to the same disaster-recovery host.

Oracle Database Server

Structured application data is stored in an Oracle database. The database
server is also configured as a failover cluster, but in an active/passive
configuration this time. One server runs the database; a second server
with the same hardware configuration is kept as a hot backup node in
a high-availability cluster. i.e., that second node is up and running, but
is not utilized except when the Oracle resource group is switched to it.
Owing to performance break-ins, it is not possible to utilize that second
domain for some other service; Oracle needs all the capacity all the time
and does not degrade gracefully.

Typical hardware configurations use twice as much capacity as for file
servers – twice the number of CPUs and double the main memory for
less data storage space. The database may be stored on the same storage
subsystem that is also used for the file servers, of course on separate
logical volumes. As with the file servers, Raid10 configuration is used;
storage management happens on the storage box and not with the host’s
volume management.

To complete the description of our setup, we note that client appli-
cation programs may talk directly to the Oracle database, via Oracle
SQL*Net. To use one of those client application programs, a user needs
a license that can be obtained from one of several license servers.
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Web Server

The Web servers appear to users as one server: they are run in a load-
balancing cluster. These servers are only used to host the application.
The Web application holds no data and has no permanent state.

There are two load-balancing devices that are themselves a cluster
too. They are run in an active/passive mode and use the router high-
availability technology Virtual Router Redundancy Protocol (VRRP) for
failover (see Sect. 9.1.3). If one of them has an outage, the other takes
over.

Operating System Configuration

As already outlined, both the file servers and the database server run on
Unix servers, as several failover clusters. Attached to the cluster are two
associated external storage subsystems.

Example 1 (Example configuration of primary clusters). The serv-
ers utilize Solaris, and Sun Cluster as high-availability software. Config-
uration is a standard failover cluster configuration, with NFS/CIFS serv-
ers and Oracle as resource groups. EMC boxes do storage management;
the management interface is ECC. PowerPath is used to enable access to
EMC boxes via multiple paths.

The hosts are installed manually, with support of the configuration
management system cfengine. Such configuration management systems
allow the definition of standardized configurations that can be reproduced
all the time. A Jumpstart server exists to support provisioning; auto-
mated patch management is done by scripts supplied by Sun.

There is also no need for special log management: regulatory or busi-
ness demands from SOX or Basel II do not exist.

Infrastructure

As explained in Chap. 9, it is not easy to identify all infrastructure ser-
vices that are used in total by an application or a system.

The servers are connected with gigabit network interfaces to the In-
tranet backbone, and usage of file and database servers depends on
a functional network. The network itself is highly available, though there
have been major outages caused by worms in the past. Common infra-
structure services like DNS and Network Time Protocol (NTP) are used
as well. NTP is not necessary, but without DNS, functionality cannot be
delivered.

Some workstations run Unix and need an LDAP authentication ser-
vice to log in. The service is also needed by file and database servers,
both of them also use LDAP for authentication. The LDAP master server
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Fig. 10.9. Services and systems at the primary site

is a smaller server, and several replicated slave servers exist, both at
the primary site and at the disaster-recovery site. On that master server,
auxiliary administration software is used to manage the Unix accounts.
Disaster recovery for the LDAP master server needs to be made available
as well. This is not as critical as Oracle and file service though, as we can
run without the master server for quite some time owing to existing slave
servers.

Other desktops run Windows. These desktops also depend on network
services, e.g., on Active Directory domain controllers. Disaster recovery
for these Windows Network Services has already been established in an-
other project; therefore, we do not need to consider them in this system
design.
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The licenses are maintained on three license servers, running Unix
as well. The license application software already realizes a distributed
operations model; these three servers run as a cluster. (The number three
was taken from a FlexLM installation, where at least three servers must
always exist.) That application-level cluster has high latency demands
and cannot be operated as a metro cluster. Therefore we need to provide
disaster recovery for these servers as well.

Finally, we have completed our overview of all relevant services on the
primary servers and can show them in the schematic graphics of Fig. 10.9
on the facing page.

Related Systems, Not at the Primary Site

File and database backup and archiving of the primary systems is done on
the TSM server at the disaster-recovery site. The TSM server recognizes
the servers’ identities: each node has a unique ID that is bound to the
physical system. In the disaster-recovery case, there will occur problems
with that knowledge; it is not possible to migrate the backup to changed
physical hosts without adaptation of the state of the TSM server.

Dependency Diagram

Figure 10.10 on the next page presents the resulting dependency diagram
for the primary site. As so often, several dependencies are not shown be-
cause they would make the diagram incomprehensible, e.g., all compo-
nents have dependencies to the administration.

It is obvious that the application, the user environment, the admin-
istration environment, and the physical environment are single points of
failure. It is not obvious that there are many more single points of fail-
ure in the components that are marked as redundant. As we explained in
Chap. 3, such redundant components typically have a redundancy man-
agement part that is not redundant, though also it will not probably fail.
In addition, the high-availability environment will not protect against
multiple errors of dependent components; such a failure will escalate into
a major outage.

10.7.2 Business Requirements and Project Goals

The servers provide mission-critical services. The disaster recovery is
part of the ITIL business continuity process. It asserts that the business
owner’s staff can do their work even if the named primary systems that
they need are damaged.
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� Scope

Disasters in the client environment are not covered.
The disaster-recovery solution shall also recover from logical disas-

ters, i.e., from major outages in upper levels of the system stack. In par-
ticular, it shall recover from software and administration errors.

� Service Level Agreement

The RTO is 4 h at maximum, with an expected recovery in 2 h. The RPO
is 4 h for database data and 8 h for file data.

That is, the disaster-recovery systems at the disaster-recovery site
must be up and running within 3 h.

At maximum the last 4 h of changes to the database and at maximum
the last 8 h of changes to file data may be lost.

The RPO limits were chosen to be a compromise between implementa-
tion costs and business damage. Shorter RPOs would have needed more
computer system resources on the primary site.

� Process

The disaster case must be declared explicitly. It can only be declared by
a group of executives (CIO, IT lead, business manager) and their proxies
that are personally named.

� Cost Efficiency

The disaster-recovery systems are mostly dedicated for disaster recovery.
But they may also be used for testing purposes for a limited time range,
e.g., to prepare for major changes like an Oracle upgrade. They are not
used for any production service.

There will be fewer disaster-recovery systems than there are primary
systems; one server will provide several services during disaster recovery.
Those servers will also have less performance and less capacity than the
primary servers. The reduced hardware equipment was set as a project
goal from the start, to get a cost-effective solution. After all, the disaster-
recovery systems will be idle most of the time and reduced performance
can be accepted when major outages occur.

10.7.3 Business View

This section will give you information on the conceptual view, about the
business entities involved, business processes, etc. It lists the business
resources both of IT staff and of the business owner that are used to build
the disaster-recovery solution.

Responsibilities for processes and systems often evolve over time and
carry the baggage of many organizational restructure leftovers. This is
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not unusual, as most big and many medium-sized companies have merg-
ers at some point, or some other drastic business changes that also influ-
ence IT management. Therefore it is hard to give a blueprint for roles and
responsibilities – the allocation of roles should evolve pragmatically, and
typically depends on personal relationships as well.

That said, the separation of work is typically as follows:

� IT Department

The IT department installs, configures, and maintains the servers, both
the primary systems and the disaster-recovery systems. It also maintains
the application. Administrative services (LDAP, license servers) are also
run by the IT department. Database administration and monitoring is
sometimes managed by a special subgroup; this depends on the number
of IT staff. Even more often, network issues are delegated to a network
department that is responsible for network and network-related infra-
structure services. Both the IT system and the IT network group have
vendor-support contracts.

The IT department is also responsible for the disaster-recovery prepa-
ration phase.

� Disaster-Recovery Project Team

The disaster-recovery project team is responsible for the architecture and
review of major changes. It is mainly staffed from the IT department, but
should also have people from the business department on board, and is
often extended with subject-matter experts. Vendors are consulted by the
project team, the IT staff, and also sometimes by the business owner. In
theory, the IT staff or the project team provides the service and handles
the connection to the supplier; there is no need for business owners to con-
sult vendors. In practice, vendors approach them directly, and sometimes
they also want to have a say on technology decisions as well.

� Business Owner

On the business owner’s side, often an executive manager is directly re-
sponsible and involved; of course, he or she will get support from his or
her business staff as well. At other places, responsibility for disaster dec-
laration and disaster recovery is placed at a board support position.

As already mentioned, a disaster case can be declared by consensus of
a group of executives and their proxies. This group is named personally;
checking a declaration against the list of people is part of the disaster
process.

Of course, there are also the end users who actually use the systems
and the IT staff and business owners are responsible for servicing them.
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Table 10.5. RASIC chart for disaster recovery

IT staff DR project Business
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Governance/IT management
Declare disaster case I I R I R I
Run primary and backup systems R A C I

Preparation
Disaster-recovery preparation: data
replication, updates, configuration

R S A C I

Prepare for network-related disaster cases I R I I I
Test disaster-recovery functionality R S A C I

Day to day
Switch to backup system (failover) and
repair primary system

R S S S I

Failback to primary system R S A A I
Handle network-related disaster cases I R I I I

R responsible, A must approve, S supports, I must be informed, C consults

� RASIC Chart

A better overview of major activities and associated roles is given by the
RASIC chart in Table 10.5. RASIC charts are excellent means to express
the distribution of roles for an area: they express which stakeholder is
responsible, must approve an action, shall support, must be informed, or
consults (adds subject-matter expertise).

You are not expected to be able to use this table directly and with-
out any changes, as there will be differences from company to company
– sometimes even from project to project – of how work is distributed.
Nevertheless, this table will be a good start for you. If you realize your
disaster-recovery solutions with outsourcing contractors, a reduced ver-
sion of this chart, together with a description of the IT processes, is the
best part of the outsourcing contract.
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Fig. 10.11. Disaster-recovery redundancy approaches

10.7.4 System Design

The system design presents the logical view of the architecture compo-
nents. It describes the components (servers and services) that are in-
volved, what function they deliver, which hosts are involved, and which
technical processes are used to implement disaster recovery.

We need to consider redundancy on several abstractions levels, as ex-
plained in Chap. 3. Redundancy is achieved by different methods for dif-
ferent components, as shown in Fig. 10.11.
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Table 10.6. Example hardware sizing

Primary systems DR systems

CPU Memory (GB) CPU Memory (GB)

Database cluster 2×8 32 8 16
File server cluster 2×8 32 4 16
Web server cluster 2×2 4 1 4

We have not differentiated between application and middleware pro-
grams. The only middleware that is in use is the Oracle database; and
that is provisioned in the same way as application software. If it had
been deployed in a different way – e.g., if manual deployment is needed
for Oracle, but automatic deployment is available for the application –
we would have listed it separately. For the sake of redundancy decisions,
LDAP and license servers are also considered applications. This is due
to the fact that LDAP is not part of Solaris proper – for a Linux server,
LDAP would have been part of the configuration.

Let us have a bottom-up look at that diagram and start with the hard-
ware first.

Hardware of the Disaster-Recovery System

The hardware is dedicated for disaster recovery, but may also be used
for limited testing purposes. The disaster-recovery system is not as large
as the primary system: At the primary site, we have three servers on
four systems in two clusters: two file servers on two systems in an ac-
tive/active failover cluster, and one database server on two systems in an
active/passive cluster.

We utilize just two systems for disaster recovery, one for file service
and one for database service. In the disaster case, the two file servers will
both run on one system. The system can handle outages of the database
server, the file server, or both. Full functionality will be available with
reduced performance.

Both servers have half the main memory of the primary servers. Ta-
ble 10.6 has an example sizing that could have been used. The sizing
example uses existing experience with performance data. Such perfor-
mance data can be captured in the initial setup or during operations of
the primary systems.

For the disaster-recovery disk storage, storage subsystems with Fi-
bre Channel drives are used as well. To reduce costs, we use drives with
higher capacity and Raid5 and thus need fewer disks. This will raise re-
dundancy recovery times in case of disk outages, but this is sufficient for
the disaster-recovery system.
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The performance of the disaster-recovery system will be reduced, but
the volume of work is doable. Owing to performance reduction, people
might need to work longer to finish their assigned tasks; this is acceptable
for the customer. You will have noticed that CPU sizing of primary and
disaster-recovery systems is quite different in our example sizing. The
file service (NFS or CIFS) does not break down in the case of reduced
CPU performance and reduced available memory – it justs need longer
to finish. As services, NFS and CIFS are very robust. Oracle is different
here: if the system load goes beyond some limit, the service is not reliable
anymore.

While CPU and memory have the largest influence on performance,
the overall metrics not only depend on CPU and memory, but also on
I/O. Owing to slower disks, I/O will be different for the primary system
compared with the disaster-recovery system too. This difference cannot be
analyzed in advance; one needs to do benchmark tests for sizing and check
the available throughput. Initial sizing for such benchmark tests is done
by senior engineers who use their past experience. Such “gut estimations”
are not reliable and should not be used for contracts or for final sizing
decisions.

When hardware capacity is changed at the primary site, it must be
checked if sizing of the disaster-recovery system is still OK, or if an up-
grade is necessary there as well.

A frame with blade servers might provide disaster-recovery systems
for the LDAP server and the license server. Those servers have neither
high CPU nor high memory or disk space demands. Such a server can
also be used for administrative purposes, e.g., as a JumpStart server for
provisioning Solaris software.

Figure 10.12 on the next page summarizes the disaster-recovery sys-
tems.

Programs and Configuration

System programs are Sun Solaris, EMC PowerPath, Samba, and asso-
ciated administrative tools (many of them are open-source tools). On the
primary system, Sun Cluster is used in addition. To reduce costs, that is
not the case on the disaster-recovery system. In the case of upgrades, in
particular when security-related patches are deployed, both the primary
and the disaster-recovery systems must be updated. For provisioning,
a JumpStart server is used. Change management processes have been
adapted to assert that provisioning of the disaster-recovery systems is
kept in the same state as the primary systems.

Application programs are not provisioned via the JumpStart server,
as system components are. Instead, they are installed manually, in an
application-specific way. Nevertheless, one can handle them similarly to
system programs: each time a program change happens on the primary
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Fig. 10.12. Disaster-recovery systems

system, it must be done on the disaster-recovery system as well. It might
just be a bit more complicated, if the application has no proper installa-
tion and upgrade support.

System configurations are not identical on the primary system
and on the disaster-recovery system. This is mostly due to the disaster-
recovery system not being a failover cluster, but is also due to hardware
differences.

Clusters as Primary Systems

It is a common situation for mission-critical servers that some cluster
technology is utilized for the primary servers, very often failover clusters.
This brings up immediately the question of how the disaster-recovery sys-
tems will be set up, if they will be cluster systems too.

Often one will not buy several disaster-recovery systems for one ser-
vice, just to run a cluster again. This is quite expensive, and that money
might be better spent elsewhere. On the other hand, if we have a cluster
environment at the disaster-recovery site as well, replication of the pri-
mary site gets much easier: programs, locations, and configurations can
be made the same and automatic replication can be used.

We have three options to provide disaster recovery for failover clus-
ters:
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1. Utilize a cluster at the disaster-recovery site as well. Cluster prod-
ucts also work on single hosts: they have to function in the case of
outages of the other nodes. One can set up a one-node cluster explic-
itly. This allows the cluster configuration to be reused and the cluster
management component to start, stop, and monitor services at the
disaster-recovery system.

2. In those rare cases where a single-node cluster is not possible, one
can utilize virtual host technology to run several pseudo hosts on one
system. They can be grouped into a cluster, and again we can reuse
the primary system’s setup for the disaster-recovery system.

3. One can abstain from cluster technology at the disaster-recovery site.
But then one has to adapt programs, configurations, and technical
processes to the different environment.

The first two options are actually rather straightforward; therefore,
we will concentrate on the third option and will have a more detailed
look at what happens when we do not utilize cluster technology at the
disaster-recovery site of our example system design.

� IP Addresses

Section 9.1.6 presented several approaches that can be used as network
design for disaster-recovery sites. Here we decided that we do not use
building blocks, but implement one big VLAN that spans the primary
and the disaster-recovery sites. The risk of spanning tree loops has been
accepted as small enough to bear that risk. A reconfiguration of the (ex-
isting) VLAN would have brought much more complexity with it.

Since the primary systems are failover clusters, all IP addresses that
are used by clients are virtual IP addresses anyhow; they must be mov-
able between cluster nodes. The network interface cards (NICs) have dif-
ferent primary IP addresses, colloquially referred to as “physical host ad-
dresses.” We can move those service IP addresses to the disaster-recovery
system in the disaster case. This gives us two advantages: no configura-
tion in clients or DNS must be changed; and no application configuration
that records the IP address must be changed.

Care must be taken that the disaster-recovery system configuration is
not activated as long as the primary system is still up. IP address con-
flicts would lead to problems immediately. To achieve this, no automatic
activation is implemented; that needs to be done manually. Of course, not
every command is issued manually; scripts have been written that pro-
vide appropriate abstractions and ease that task.

� Mapping of Primary Clusters to Disaster-Recovery Systems

On the primary system, two servers are available for file service, and two
for the database. These four servers are run as two failover clusters with
three services:
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• The database service runs on two servers. This logical database host
is so important that an unused server is used as a hot standby.

• Two file services run on the other two servers. i.e., every server has one
logical file service host associated by default and will take on another
one in the case of failovers.

Important system configuration, like host names, IP addresses, file
system mounts, and service starts, is done by the cluster subsystem. The
cron jobs also assume a cluster environment. They are activated on all
cluster notes and test for active services.

On the disaster-recovery system, two servers are available: one for file
service and one for the database. The two file servers from the primary
system are mapped to the one disaster-recovery file service.

Since the file services do not conflict with regard to file system names
or other internal configurations, it is no problem to do so. That there are
no problems is inherent from failover cluster technology: they must be
able to run on one cluster node anyhow.

Application Data – File and Database Services

Application data, both files and databases, are replicated. Any data
change – deletion, insertion, and changes of files, metadata, or database
records – is delayed by the RPO, 4 h for database data and 8 h for file
data. This is the precaution against the “operator removes all data” and
the “data is destroyed by software error” disasters.

Merging several NFS file servers into one server has some twists that
we are lucky to avoid because the primary servers run as a failover clus-
ter. The files are accessed as server:/filesystem/directory/file.
If we serve two servers from the same system, they will use the same
file system structure. If formerly both servers used the same file system
export names, and the subdirectories therein are also named similarly or
are even the same, it might be difficult to keep the filenames apart. NFS
file servers cannot easily have different file system exports on different
IP addresses, so one cannot establish two export namespaces. Here this
shows that it is sometimes advantageous not to standardize on a common
name; e.g., not to name the exported file system /export on all servers.

Merging two CIFS servers with Samba is easier. There the CIFS
filename would be //server/share/directory/file, and the share
names of different servers could conflict. But Samba allows several in-
stances to be run with different configurations on one system that are
bound to different (virtual) IP addresses. Since in contrast to NFS, the
share name can be arbitrarily mapped to directories, one can always cre-
ate workarounds for name conflicts.

The configuration issue goes even further: One needs ongoing access
to the running disaster-recovery systems, as we need to synchronize in-
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stallations and replicate data. In particular, we need a running Oracle in-
stance for redo-log shipping; see later. Furthermore it should be possible
to do functional tests without the need to shut down the primary systems;
therefore, we need configured test instances of Oracle, NFS, and CIFS
services on the disaster-recovery system. They must not use the same IP
addresses as the primary system, but can use the disaster-recovery do-
main’s IP addresses.

With appropriate precautions in mind, we can configure application
clients to use these servers and test functionality. Those precautions are
needed because we will change the server’s state with these tests, and
resynchronization must be assured. More will be said on test processes in
Sect. 10.8.

� Redo-Log Shipping

This technology was explained in Sect. 10.4.4. It is used to replicate
the database on the disaster-recovery system. Copy of redo logs to the
disaster-recovery system should be done early, but replay of redo logs
should be postponed by 2 h; this will enable us to handle the disaster case
caused by human or software errors. Therefore, online redo-log mirroring
cannot be used; we use archive log replication with the Oracle product
Data Guard.

For that process, the Oracle disaster-recovery database is configured
as a standby database, with a different IP address. Replication of data
and data schemas is all done by automated archive log mirroring, but
data store and configuration changes (e.g., new or changed table spaces)
are replicated manually.

Usually, the database replication is just ongoing. Redo-log replay can
be stopped if the database is needed for tests or other activities; as long
as its content has not been changed, it can continue afterwards without
any problems. If there were write accesses for tests, or if there is more
than 1 week’s worth of redo logs, the whole database is set up anew; this
setup process is described in detail in Sect. 10.7.5.

However, we must not be too indifferent about difficulties with that
solution. If the disaster is a result of human or software error and that
error is detected within 2 h, there are two ways to resolve the situation:

1. One can skip the last batch of updates, i.e., lose 2 h of work.
2. One can try to identify the erroneous SQL statements in the redo

log and discard them. This is risky, error-prone work, and one needs
knowledge of internal application data models to be successful. Nev-
ertheless, sometimes the gains are worth that risk.

The decision as to which of these two methods should be used is not
easy and is basically a business case: Is the 2-h work worth the risk of an
erroneous log repair? The decision can be wrong, especially under the
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pressure of a disaster case. But that difficulty cannot be resolved up-
front – in the end, people need to make decisions in the disaster case
and manage the risk.

If a human or a software error is discovered after more than 2 h, we
need to restore the database from TSM and can then apply redo logs
again. This will need longer, but will work as well as in the case of early
discovery.

� File Mirroring

This is used to replicate file data. Of course, only differences are mirrored.
A “trash can” feature protects against erroneous changes and deletion.
Changes in content or metadata (ownerships, access rights, modification
time stamp) or deleting lead to movement of the old file into the trash
can area. Several generations will be held there. The mirroring will be
idempotent and will not have any state besides the actual files: one can
activate it as often as one likes, and if files on the disaster-recovery sys-
tem are changed outside the mirroring process, they will be replicated
again next time.

In the case of rollback, file instances are selected manually in the trash
can area, to be moved back to the file area. This may result in inconsis-
tencies in the application’s data. Hopefully, the application has a method
to check its data for consistency and repair it if necessary.

During implementation, several open issues must be clarified:

• Resource usage on the primary system by the file mirroring must not
hinder production; i.e., the mirroring must not use “too much” CPU
time, memory, disk I/O, etc. Benchmarks must be done to decide what
“too much” is; this is not a conceptual question but will be decided by
tests.

• The same holds for network resource usage; the bandwidth between
the two sites is limited and is also used for other goals.

• It must be confirmed that the total run time of one file synchronization
is not longer than 6 h. This gives us a gap of 2 h to our RPO of 8 h; this
gap is needed as a safety limit if the primary system is under a heavy
load or if something goes wrong during synchronization.

• Placement of the mirroring facility must be decided by benchmarks
too: Is it better to push the changes (mirroring from the primary sys-
tem) or to pull them (mirroring from the disaster-recovery system)?

� Reestablishing the Primary System

After disaster has been declared, the services are switched to the disaster-
recovery systems. But this is not the end of disaster recovery, that is only
finished when the primary systems are functional again. During the time
that the primary systems are being repaired or replaced, data will be
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changed at the disaster-recovery system, and the data must be synchro-
nized back to the new primary systems.

This is an important issue that has to be considered in advance in the
concept. For the database, we restore a snapshot by TSM, and the incre-
mental change is done by redo-log shipping. The files are replicated back
by our file mirroring facility as explicated earlier. This has the advan-
tage that we can first replicate data while the disaster-recovery system
stays productive, and we have only a very short downtime during final
resynchronization.

Web Service

There is only one Web server that replaces the Web server cluster from
the primary site; therefore, no load-balancing devices are needed on the
disaster-recovery site either.

Since the Web service has no permanent data, disaster-recovery prepa-
ration consists of keeping the Web application and the Web server config-
uration up to date. This is done by operational procedures during changes.

Infrastructure Services

LDAP disaster recovery does not need an immediate disaster-recovery
system for the master server: usually one runs a large number of slave
servers, for performance reasons. One can therefore rightly assume that
slave servers are available on the disaster-recovery site as well. In the
case of a disaster, one of them can be manually promoted to the master
server without any problem. With the available slave servers and this
new master server, LDAP can be used for authentication without prob-
lems and passwords can be changed as well.

Sometimes more work has to be done for account management though.
Many companies utilize third-party software to manage accounts as part
of their business processes (e.g., accounts might be automatically disabled
when a staff member is laid off.) Special disaster-recovery preparation
might be needed for such software, but this is beyond the scope of this
prototypical system design.

License server disaster-recovery systems are made available eas-
ily, as these services have no state and no data beyond the configura-
tion. Disaster recovery for these servers exists because they are mission-
critical – one cannot use the application without it.

TSM backup is still available and must be deactivated in the disaster
case. The logical nodes on the primary servers are systems in their own
right, they do not exist on the disaster-recovery system anymore. Before
their backup continues, the TSM server must learn about the changed
TSM node ID.
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Luckily, TSM can handle more than one node definition per physical
system. Since file system names are different for all servers – as we men-
tioned in the file mirroring explanation – their names can be kept on the
disaster-recovery system as well. There TSM can capture them when it is
reactivated.

Network disaster recovery is already available and does not need
to be handled in the context of this project. This also includes network
services like DNS or NTP.

Dependency Diagram

We have already seen the detailed dependency diagram of the primary
systems and services in Fig. 10.10. Figure 10.13 on the following page
completes that picture and adds the disaster-recovery systems. For the
sake of conciseness, we use less detail for the primary systems this time.

10.7.5 Implementation

This section will go deep into technical details and will present an imple-
mentation procedure for this prototypical system design. That was partly
the reason why we named particular products in the design and made
factual assumptions about servers. Only with such specific information
can sensible technical information be given.

Oracle Redo-Log Shipping

The base of the Oracle replication is the identical physical structure of
primary and disaster-recovery systems; therefore there are no differences
in configuration. We need to create the standby database on the disaster-
recovery system, and run it in standby mode there. Of course, we want
also logs, metrics, and status reports.

� Creation of Standby Database

The creation is done in two parts: we have to create the database files,
and we have to create the standby control files.

There are three possibilities to create the database files:

1. On the disaster-recovery system, restoration of a full backup from the
TSM server.

2. Direct copying of the database files from the primary system. This is
best done in an SQL*Plus session on the primary database, since the
database server must be turned into state backup for that.

3. On the disaster-recovery system, direct copying of the database files
from the primary system’s last full backup.
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This must be done for all database files. With the help of Oracle’s
system tables, it is easy to automate the creation of a setup script. The
standby Oracle control files are created on the primary system: this is
an SQL*Plus functionality. It can be copied afterwards to the disaster-
recovery system.

� Redo-Log Replication to the Standby Database

Starting from the backup or from the last successful redo-log replication,
all archived redo logs must be made available on the disaster-recovery
system.

First, a cron job on the primary system copies all archived redo-log
files to the disaster-recovery system. The script copies them from the
archive directory on the primary system to the transfer directory on the
disaster-recovery system. After successful action, the timestamp of the
last transferred log file is saved as input for the next job.

Without log shipping, a cron job removes all redo-log files that were
saved in TSM. This cron job has been changed to look at the timestamp
file and prevent removal of redo-log files that have not been copied yet.

If there is a disk space shortage, removal can be forced. Then, the
archived but not yet copied redo-log files must be retrieved from TSM to
the disaster-recovery system manually, to keep the standby database in
sync.

On the disaster-recovery system, a cron job runs that first moves all
redo-log files older than 4 h (time can be changed) from the transfer direc-
tory to the archive directory of the standby database. If there is any log
file to recover, the job will start the disaster-recovery database in standby
mode and will activate the recovery. After the last redo-log file from the
archive directory has been applied, the Oracle instance will be shut down.
The recovery log file now lists the redo-log files that were applied; they
can be deleted now.

� Physical Database and Configuration Changes

Physical changes in the database structure are not mentioned in the redo-
log files. These changes must be replayed manually on the standby data-
base. Not doing so will crash the database!

To add a new data file to a table space, the following activities are
necessary:

1. Direct copying of the data file from the primary system (as with the
original setup of the standby database, explained before)

2. Creation and transfer of new standby control files (explained before)
3. Addition of new data files to the standby database; this is done in an

SQL*Plus session

When the recovery is started again, applying the redo logs will synchro-
nize both instances.
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Changes of an init parameter in the primary system has no direct con-
sequences for the standby database. Nevertheless, the basic Oracle con-
figuration file init.ora should be copied to the disaster-recovery system
as it is changed, to enable quick turn-on times.

To help with these tasks, a script was written. It supports the follow-
ing four service tasks:

1. Creation of new standby control files from the primary system and
replication on the disaster-recovery system

2. Addition of new data files to the disaster-recovery database, after they
have been created in the primary database

3. Replication of the configuration file init.ora on the disaster-recov-
ery system

4. Restoration of the last TSM backup, for a new setup of the disaster-
recovery database

That script is menu-based and protects the database administrator with
security checks. It is not used in the disaster case, as it needs access to
the primary system.

� Status Reports and Replication Log Files

The status report is created every hour by a cron job on the disaster-
recovery system. It is copied to the primary system and appended to its
status report; therefore all relevant reports are available in the report
repository under the primary system.

The status report contains:

• An analysis of alert logs on error messages of the last 3 days that are
not typical for standby databases. For control of this analysis, a test
log entry is created daily as a sentinel – normally only these three
entries should be seen.

• The count of the processed redo-log files of the last 3 days.
• The state of recovery (first and last redo-log file) of the current day.

An example of such a report is as follows:
---> Begin at Sun Sep 11 14:02:22 MEST 2005 on dbdr-ph <----
Oracle status report for Disaster Recovery server dbdr-ph
Uptime: 2:02pm up 1 day(s), 3:47, load average: 0.82, 0.36, 0.26

*******************************************
List of instances on dbdr-ph:
DB
*******************************************

Significantly Standby database ORA-errors in alert_DB.log at
the last 3 days (last 50 lines)

Sat Sep 10 10:51:51 2005
ORA-9999 *** It s the daily test error log entry - ignore it !
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Sun Sep 11 10:52:55 MEST 2005
ORA-9999 *** It s the daily test error log entry - ignore it !
Count applied Redologfiles : Sep 9 = 110
---------------------------- Sep 10 = 85
Sep 11 = 54

Applied Redologfiles today
--------------------------
Start Load Archive Sun Sep 11 00:31:01 MEST 2005
from /oraarc/DB/DBarch_0000045553.arc
until /oraarc/DB/DBarch_0000045607.arc
Stop Load archive Sun Sep 11 14:01:53 MEST 2005

---> End at Sun Sep 11 14:02:23 MEST 2005 on dbdr-ph <------

The redo-log recovery scripts also write status information to log files.
This makes it possible to realize when redo logs were placed in the archive
directory and when they were processed. Furthermore, one can see how
long the processing needed.

File Replication

The synchronization program is running on the disaster-recovery file
server. rsync is used for all base functionality, but is not sufficient to fulfill
all requirements.

Initial synchronization:
1. All previous data in target directories is deleted.
2. All data from the source directories is copied to the target direc-

tory.
Incremental synchronization:

1. Copying of the following files and directories to the target site
• New files
• Files with different size
• Files with changed owner
• Files with changed permissions

2. Run synchronization in parallel.
3. Option to save all deleted or changed data from the primary site

into a “trash can” directory to have the possibility to restore an
earlier state. Stop synchronization of data in case the trash can
file system runs out of space to avoid propagation of unplanned
deletion of data (e.g., human error or software corruption) on the
primary site.

Failback synchronization:
Use the same program to copy data from the disaster-recovery site to
the primary site after the primary site has been replaced.
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Fig. 10.14. File replication statistics from an example implementation

To fulfill these specific requirements and to provide output of metrics a
wrapper script can be written. No commercial product is known that pro-
vides this functionality under Unix; some local programming is needed
here.

The information of which file systems should be transferred is speci-
fied in a configuration file. Grouping in the configuration file allows par-
allel streams for the data synchronization. For each group one stream
will be opened. The file systems to be synchronized are mounted readable
from the productive server using NFS.

To meet the requirement of restoring an earlier state all changed and
deleted data can be copied optionally into a disaster-recovery file system.
The disaster-recovery file system has the size of the primary file system.
In case the disaster-recovery file system has no space left, the synchro-
nization program stops. For example, if for some reason (either human or
software error) a couple of file systems – or in the worst case, the data of
a whole server – were deleted on the production site, this feature avoids
the transfer of the problem to the disaster-recovery site. The data on the
disaster-recovery site is still available in the last stage.

The synchronization program runs every night. The limiting factor
is the CPU on the disaster-recovery server – Fig. 10.14 provides some
statistics from an example implementation.

System Configuration

For the sake of cost efficiency, we run the same operating system and
application version as in production. This leaves open the risk of software
errors that might be repeated at the disaster-recovery site after a restart.
From experience, we judge this risk to be acceptable, compared with the
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cost of running and testing different software and/or different versions,
i.e., for the named software, we think the chances of such failures are
lower than the chances of outages due to version mismatches.

This implies that every version and configuration change on the pri-
mary systems has to be done at the disaster-recovery site as well. The
same file system configuration is used as at the primary site: the same
naming convention, the same UFS configuration, the same volume size.
All changes to the software have to be done on the disaster-recovery sys-
tem as well, either manually for the application, or using packages and
patches for system software.

In fact, it is best to deploy patches first on the disaster-recovery sys-
tems. At least the database runs (for redo-log shipping); if the patch has
gross errors they will be caught there. After 2 weeks, the patch can be de-
ployed on the primary systems as well. This process does not make tests
on preproduction (staging) systems irrelevant, it amends them.

In the case of file system changes (creating a new file system, deleting
a file system, renaming a file system or changing the configuration) the
equivalent file system on the disaster-recovery server has to be changed
manually and the configuration file of the synchronization program has
to be changed too.

This part of the disaster-recovery solution is the most critical because
it is not automated. Since many human manual activities are required
here, this is the most likely place for errors to happen.

10.8 Failover to Disaster-Recovery Site or
Disaster-Recovery Systems

Now that we have seen the preparation for disaster recovery, we can cover
the actual procedures to migrate IT services from primary systems to
disaster-recovery systems in the case of major outages. This can be a com-
plete outage of the primary site: in that case the whole disaster-recovery
site is activated as a replacement. Or a single primary system or compo-
nent might have failed: then just the respective disaster-recovery system
is activated.

In this section, we will have a look at the steps that are necessary to
bring a disaster-recovery system or a whole disaster-recovery site alive.
These procedures are used in real disaster cases as well as in disaster-
recovery tests.

10.8.1 General Approach

The assumption is that after a disaster people are available who know
where to find the disaster-recovery instructions (Disaster-Recovery Emer-
gency Pack).
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� Disaster Detected

When a failure cannot be repaired within the SLA of a minor outage, it
becomes a major outage. Or if a failure occurs that is not covered in the
failure scenarios for minor outages and against which no high-availability
precaution exists, then a major outage has happened as well.

At this point in time, we anticipate that we might have a disaster, but
no “official” decision has been reached. The hypothesis of a major outage
must be confirmed first.

� Open Disaster-Recovery Emergency Pack

The Emergency Pack should contain all required documentation, as listed
in Table 10.4 on p. 324. The process descriptions are needed first, in par-
ticular the internal escalation procedure and the roles and responsibilities
document. The latter should also contain the RASIC chart that we pre-
sented in Table 10.5 on p. 335, and an up-to-date communication plan.

These documents will help to handle the situation at hand. We must
never underestimate the importance of checklists in such situations: they
remind us of minute details that we are prone to forget in the hectic situ-
ation of a major outage.

We should be aware that this may not be an easy situation for many
staff members. Major outages that are caused by problems in the physical
environment are called disasters by right – the disaster recovery team
might have to handle the death of coworkers and of friends and still have
to get their work done.

� Analyze Situation

Assess the damage. There may be outages of facilities, telephones, power
supplies, IT systems, networks (WAN, LAN), and human resources. It is
important to get an overview of the magnitude of the outage to consider
this fact for all further decisions. For example, technical skilled man-
power is required to conduct a proper switch to the disaster-recovery site.

Assess the situation of the disaster-recovery system/site (facilities).
Before the decision is made to start up the disaster-recovery system, it
must be ensured that the disaster has not affected the disaster-recovery
site, and that the disaster-recovery facilities as well as the disaster-
recovery infrastructure are still ready to be used.

� Make a Decision to Switch to the Disaster-Recovery Site

After the situation has been analyzed and the impact of the disaster
is known, the actual decision can be made to switch to the disaster-
recovery site. The decision has to follow the decision process. Only the
decision makers or their substitutes can reach a decision. It is highly rec-
ommended to include the business owner of the actual business being
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performed on the infrastructure as well as the business owner of the IT
system in the decision process.

� Establish a Command Center and a War Room

The command center and war room should be ready at the disaster-
recovery site. A location at the production site does not make sense be-
cause that might be destroyed in disaster case. Ideally the command cen-
ter and war room should be close to the disaster-recovery hardware.

All hardware which is necessary to setup the disaster- recovery infra-
structure has to be ready to be used and has to be independent of the
production environment (e.g. user login, network).

� Review the Disaster Recovery Procedure

Before the real switch to the disaster-recovery site starts, the disaster-
recovery procedure should be reviewed by a team of experts and a deci-
sion maker to ensure a successful failover, especially if the last disaster-
recovery test took place a while ago.

All further steps will take place under the assumption of total damage
to the primary system or site and that they cannot be recovered in an
adequate time frame, and also guaranteed stability.

� Preparation

We need to communicate within our organization that we have a major
outage. Everybody whose work could be affected must know about this,
and everybody who might be able to help in resolving problems should be
contacted too.

We also need to communicate the disaster to people outside the com-
pany. Typically suppliers, business partners, and vendors should know
about this because we either need them during the next few hours or their
own work will be affected. The details of whom to contact are spelled out
in the escalation process part of the disaster-recovery plan.

If the disaster recovery concept is based on the minimal required hard-
ware to provide a disaster-recovery system, special agreements/contracts
with the hardware vendors are recommended to make additional hard-
ware promptly available when a disaster occurs. The setting up of these
agreements might happen during the concept phase of the disaster-
recovery system. We might also have contracts in place that will ensure
on-site availability of vendor technical specialists or contractors to help
us achieve a working disaster-recovery switch.

� Activate and Verify the Disaster-Recovery System

This topic only covers the high-level approach of what to consider when
activating a disaster-recovery system in general. For each disaster-recov-
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ery systems a separate checklist has to be developed which contains all
failover steps for the specific system.

For the systems from our prototypical system design, we provide an
example checklist below.

Ensure that the primary system is down and stays down
Mainly if the primary system is in an undefined state it could startup
unmanaged. This has to be taken care of. Unplugging the primary sys-
tem from the network should be considered to avoid any uncontrolled
mixture between primary and disaster recovery services.

Stop replication between primary and disaster-recovery system
Ensuring a certain state of the data on the disaster-recovery system
requires a shutdown of any data replication.

Analyze functions and services on the disaster-recovery site
Verify that the disaster-recovery site is ready to be used and all re-
quired functions and services are properly installed and configured.

Analyze data status
Check when the last synchronization ran properly. Verify the consis-
tency of data to define potential data loss. If data corruption occurred
on the primary site it is important to ensure that this problem has
not been transferred to the disaster-recovery site.

Start services on the disaster-recovery system
Start all services manually and check carefully if they run. Use a test
client to access the services.

Use the disaster-recovery system as the productive system
When the disaster-recovery system runs as the productive server, ac-
tivation of all services has to be done only once and should start auto-
matically after a reboot of the disaster-recovery system.
The data on the disaster-recovery server has to be backed up. For
this, some changes in backup configuration might be necessary; many
backup software products work with some kind of system ID that
might have changed now. But with TSM that is not necessary. A new
full backup is also not needed; incremental backup can continue.

� Communicate That the Disaster-Recovery System Is Active

Communicate to all parties involved that the disaster-recovery site is up
and running and explain possible functional limitations and data loss.

As long as the disaster-recovery site is running as the production
site it is recommended to follow a special change procedure with limited
changes and and to have a special approval board.
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10.8.2 Example Checklist for a Database Disaster-Recovery
Server

To illustrate the kind of checklists that one needs for a specific service
during a switch to the disaster-recovery system, we will look at the data-
base service of our prototypical disaster-recovery project, from Sect. 10.7.
The following list is a specific instance of the general approach list that
we met in the previous section.

Activating a disaster-recovery system is a difficult and risk-prone en-
deavor. It should be undertaken by senior administrators who know the
operating system, system software, and database by heart.

Preparation

Check the processes and procedures. Make sure that disaster recovery
really should happen and that all stakeholders have the same goal:

• Approval of all parties involved must exist.
• Communication plan (roles and responsibilities) must exist and must

be up-to-date.
• Detailed time plan must exist and must be agreed upon by all stake-

holders.
• All operations personnel – and also the network department, if neces-

sary – are informed about the planned activities. They must not start
escalations that are caused by disaster-recovery activities just because
they happen not to know about the major outage.

� Clean Up Primary System If Possible

Stop the Oracle listener at the primary system. This means that no client
will be able to connect to the database anymore and no new changes will
occur.

If the primary system is still running, stop the redo-log shipping. If
possible and if data corruption or deletion was not the cause of the out-
age, transfer the last archived redo logs from the primary system to the
disaster-recovery system.

� Check That the Disaster-Recovery System Is Ready to Be Used

Actually, the disaster-recovery system should be ready all the time. After
all, preparation for disaster recovery made it clear that all changes on the
primary systems have to be replicated on the disaster-recovery systems.
But this is not always successful. In particular, during incidents, small
changes are quickly made that might get forgotten. We need to make sure
that the same software is available with the same versions and that data
is available.
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Check the state of the operating system, the system configuration, the
system software, and the database software. The software must be in-
stalled, and it must be installed in the same version and with the same
patch level as on the primary system. The system documentation from
the Disaster-Recovery Emergency Pack lists both the software and the
versions.

Check that the redo logs are up to date on the disaster-recovery sys-
tem. If the major outage was caused by data corruption, manually fix the
redo logs.

� Check Infrastructure

Test the network, i.e., the reachability of the disaster-recovery system by
clients.

Test also the availability of DNS, authorization services (i.e., LDAP),
and license servers.

Switch to the Disaster-Recovery System

After all the preparation has been done, we can continue with the actual
failover.

� Shut Down the Primary System If Necessary

If the primary system is still running, stop the Oracle server at the pri-
mary system. This means shutting down the logical node in that cluster.
This also disables automatically the IP address of that cluster.

Disable automatic startup of the cluster at the primary system, other-
wise somebody could erroneously activate it by rebooting.

Turn off noncluster monitoring of these services, e.g., by BMC Patrol,
Tivoli, Nagios, and MRTG.

� Verify That the Primary System Is Down and Stays Down

This is so important that we make it into a separate step. This step should
be done by somebody other than the person who did the shutdown.

Ping the primary system (i.e., the logical hosts from the database
failover cluster).

Check the process list on both physical hosts of the cluster.
Assert that the cluster is not started at boot time.

� Start the Database Service on the Disaster-Recovery System

Activate the IP address for the database server. Test it is reachable with
ping – that test is best done from a client.

Recover the database, i.e., apply the latest redo logs.
Start the Oracle instance; check that the processes are running and

there are no errors in the log files.
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Check the Disaster-Recovery System Services

Now that the disaster-recovery system is active, the supplied services
must be checked, before it can be put into production.

� Check Oracle Functionality

Check that the Oracle server is listening on its TCP/IP port, by using
netstat.

Check that Oracle is working with an SQL client. That test should be
prepared in advance and should be available as a script on the server. In
addition, successful SQL access must be checked from a user’s desktop.

An experienced database administrator must run these checks and
must sign off their success.

� Check Application Functionality

Check the application’s functionality from a user desktop.
Check that all cron jobs work.

Operate the Disaster-Recovery System as the Productive System

Before users can be allowed to use the disaster-recovery system, it must
be made a productive system first.

� Start the Database Service at Boot Time

Establish that all necessary services and resources (e.g., the IP address)
are activated at boot time. Establish all cron jobs.

� Activate Operations Systems

Backup must be reestablished. This needs reinitialization of the TSM
node definition.

Cluster-external monitoring must be reestablished.

10.8.3 Failback to the Primary System

Activating a disaster-recovery system does not finish disaster recovery.
Now that we have turned it into a production system, we drive without
safety belts. Our goal must be to reestablish full functionality of primary
systems, including high-availability setups, as quickly as possible.

When we have done so, we can switch back to the primary system,
which is commonly called a failback. Basically that is the same pro-
cess as the switch to the disaster-recovery system that we described in
Sect. 10.8.1. The same replication mechanisms that were used for the
disaster-recovery system can now be used to transfer data back to the
primary system.
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The main difference is that we do not need to detect and check the
disaster. Instead, we have to deploy and test the primary systems. But
the rest of the disaster-recovery plan is used just the same and provides
a checklist for the failback.

For the database server, utilization of a product like Oracle Data
Guard eases the failback, as it has special support for that procedure.



A

Reliability Calculations and Statistics

In this appendix we will discuss basic probabilistic and statistical coher-
ences and quantities. Our goal is to learn how to use them in real life. The
targets of our discussion are hardware components and hardware config-
urations. Software shows failures of different kinds which do not apply to
the findings in this section.

You might say that statistics is about large numbers (of outages) – it
does not apply to predicting failures which happen very seldom. Even if
this is true, we can use statistics and probabilities to predict reliability
when we configure a system. It also helps to identify anomalies during
system operations. In particular we will address the following areas:

• In configuring a new system, there are many options. In theory, your
vendor of choice should offer the best configuration for your needs; in
practice many of your hardware vendor’s presales consultants fail to
do this. And technicians who assemble the systems often do it in a way
such that the system works, but does not show the best possible avail-
ability. In the end, we want to achieve the best compromise between
reliability, cost, and simplicity.
To overcome this, we can do some basic computations and approxima-
tions to understand the consequences of configuration decisions like
“what if we used a second power supply?” or “should we configure hot-
spare disks?”
In the following, we will discuss the reliability of disk configurations
and different redundant array of independent disks (Raid) levels in
detail. There are many options to protect our data and the risk of an
inadequate configuration is high.

• During the lifetime of your system, problems will occur. Some will be
covered by redundancy (like a drive failure in a mirrored configura-
tion), others will have an impact (like a system crash after a CPU
failure), up to real downtimes. If we monitor these occurrences, im-
portant conclusions can be drawn. We can distinguish between good
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from bad systems and can identify aging systems, which need to be
replaced. Computer systems – like all other technology – differ in de-
sign quality as well as in manufacturing quality. There are “Monday
systems” similar to cars and we need to deal with them in an appro-
priate way. Such statistics are typically not published: they contain
too much political ammunition. Therefore the data of “your” outages
is an important information source, and you know that your numbers
are true.

A.1 Mathematical Basics

For the following discussion, we use some basic statistical concepts. In
this section we repeat the most important formulas – if you are less in-
terested in mathematics, skip this section and look only at the examples
given. If you want more details, many undergraduate text books, such
as [9], present them.

� Empirical Probability

If we execute an experiment a times, and get b times a certain event
E, then b/a is the empirical probability of E. For large a, we speak of a
probability for E and can use it for future predictions:

p = b
a

.

� Bernoulli Experiment

A Bernoulli experiment has exactly two possible outcomes: the probabil-
ity for event A is p, the probability for the opposite event is p = 1− p. If
we execute the experiment n times and want to know the probability of
getting exactly k times the result E (and n− k times the opposite result
E), the following formula applies:

Bn,p(k)= pk(1− p)n−k
(
n
k

)
. (A.1)

� Distribution Functions

We interpret the Bernoulli formula as a distribution function k → Bn,p(k)
with the independent variable k. It gives the probabilities that with n
experiments the number of results A will be exactly k = 0,1,2, . . . ,n times.
For large n and small p we can use the following approximations to make
real calculations easier. Equation (A.2) is named the Poisson formula, and
Eq. (A.3) is named the De Moivre–Laplace formula;
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Bn,p(k) ≈ (np)k

k!
e−np , (A.2)

P(k1 ≤ x ≤ k2) ≈ Φ(x2)−Φ(x1) , (A.3)

with
x1 = k1 −np√

np(1− p)
, x2 = k2 −np√

np(1− p)
.

The De Moivre–Laplace formula is used to calculate the probability
for an interval of outcomes (instead of a discrete number of outcomes
labeled k above). The term Φ(x) is the Gaussian function. It is an integral
which has no elementary antiderivative; therefore, it can be calculated
only numerically.

� Tests of Hypothesis and Significance

In reality, we execute only a limited number of experiments, i.e., experi-
ence a limited number of system failures during a limited time interval;
therefore, the outcomes are not expected to show the given probability.
We need to test the significance of our result to accept a given probabil-
ity (e.g., if we got the probability from our system vendor). On the other
hand, a given probability can be wrong as well, as its calculation is based
on wrong assumptions or without enough experiments to test it.

In order to evaluate the significance of a result, a so-called hypothe-
sis test is done. We first assume that the probability p(A) for result A is
correct and gives the distribution k → Bn,p(k). We make n experiments
to test the hypothesis. We expect np times the result A, that is where
Bn,p(k) has its maximum. If the measured result deviates very much from
np, then we might need to disapprove the hypothesis – the assumed prob-
ability p might be wrong. In other words, we talk about the probability
that a measured result follows a given probability.

In practice this is done as follows. We calculate the sum Bn,p(0)+
Bn,p(1)+·· ·+Bn,p(i) for increasing i until the sum exceeds a given limit.
Depending on the real numbers, the De Moivre–Laplace formula can be
helpful. This limit describes the requested quality of our result. Typical
values for this sum limit are 0.975 or 0.995. This belongs to a level of sig-
nificance of 0.05 or 0.01, respectively. Using this method, we know that
the probability of getting k ≥ i is very small (according to our earlier def-
inition). We reject the hypothesis, when the measured result belongs to
the interval [n− i,n].

� Confidence Interval for Probabilities

This is a similar circumstance but from a different viewpoint: we made
n experiments and experienced f failures. How close is our measured fail-
ure probability f /n to the real probability p? This question can obviously
not be answered, but we can calculate an interval of probabilities [p1, p2]
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Table A.1. Confidence levels γ and corresponding values of c

γ (%) c

80 1.28
90 1.65
95 1.96
98 2.33
99 2.58

which contains the real probability p with a chosen confidence level γ. If
we set γ very close to 1, this interval becomes very large. It depends on
the number of experiments and the value chosen for γ to achieve a small
enough (i.e., meaningful) interval of probabilities.

The following formula is the criterion to calculate the interval [p1, p2].
It denotes the probability Q for that interval with confidence γ:

Q

⎛
⎝∣∣∣∣ f

n
− p

∣∣∣∣≤ c

√
p(1− p)

n

⎞
⎠≈ γ= 2Φ(c)−1 . (A.4)

The value of c is calculated from γ, using the Gaussian function. Ta-
ble A.1 gives the values of c for typical values of γ.

If we have done our experiments, measured f and n, and have cho-
sen the confidence level γ, we use Table A.1 to get c. Then we can calcu-
late the interval of probability [p1, p2] by solving the following quadratic
equation: ( f

n
− p1,2

)2
= c2 p1,2(1− p1,2)

n
. (A.5)

This result can be interpreted as follows. If we would do many exper-
iments, a fraction γ of the measured probabilities f i

ni
would be located

inside the interval [p1, p2].

A.2 Mean Time Between Failures and Annual Failure
Rate

The reliability of a component (e.g., a disk drive, or a controller card) or of
a whole system is measured by the mean time between failures (MTBF).
It is the average time until a failure happens and is typically provided in
hours (to make it look more authoritative) or better in years. A MTBF of
10 years means that, on average, every 10 years a failure occurs, based
on a large sample. These numbers are provided in the component data
sheets of the hardware manufacturers; sometimes they are also provided
for whole systems.



A.3 Redundancy and Probability of Failures 363

There are two problems associated with using the MTBF:

1. The values can vary significantly, especially for components with mov-
ing parts, like disk drives. This is because the MTBF depends greatly
on the quality of the individual production batch, which is far from
constant. Manufacturers obviously try to detect quality problems, but
this is not easy, as the manufacturing of complex components is more
an art than a science. There are too many variables, like tuning of the
machinery, impurities in the clean room, quality of the materials, etc.
And then there is also the soft-factor microcode. . .

2. The appearance of failures does not follow a uniform distribution. The
failure rate is high for new equipment (early mortality) and if equip-
ment reaches its end of life. The time in-between is when we want to
use the equipment for production. We will discuss this bathtub curve
in Sect. A.6.

However, manufacturers often provide impressive numbers for MTBF,
106-h run time (about 114 years) for a disk drive is a standard value
nowadays.

The inverse of the MTBF is the failure rate. The annual failure rate
(AFR) is defined as the average number of failures per year:

AFR= 1
MTBFyears

= 8760
MTBFhours

.

The AFR is a relative frequency of occurrence – it can be interpreted as
a probability p(A) if AFR< 1, where p(A) means the probability that the
component (or system) A fails in one year. If you multiply the AFR with
the time interval you consider, you get the expected number of failures in
this time interval.

For example, for a disk drive with an MTBF of 34 years, the corre-
sponding AFR is 0.029 failures per year. If your disk subsystem contains
200 such drives, you can expect a failure every 2 months.

Even if such numbers can be discussed at length, we provide examples
from our own experience based on a sample of several thousand compo-
nents and hundreds of systems. These numbers should give you a rough
idea of the order of magnitude and we will provide “real” examples later
on. We see that all the numbers are in a similar range.

A.3 Redundancy and Probability of Failures

We consider two ways to combine components in a system or subsystem:
they can back up each other, (e.g., redundant network cards, or mirrored
disks), or both are needed for function of the combined components (e.g.,
a cable connected to a network card, or a stripe of two disks). The first
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Table A.2. Typical mean time between failures (MTBF) and annual failure rate
(AFR) values

MTBF MTBF AFR
Component (h) (years) (failures per year)

Disk drive 300 000 34 0.0292
Power supply 150 000 17 0.0584
Fan 250 000 28 0.0350
Interface card 200 000 23 0.0438

combination is obviously more reliable than its components; the second is
less reliable than its weakest component.

In principle we could use such blocks to build arbitrary complex sys-
tems, and the following calculation could cover this case. However, we
now concentrate on typical disk configurations and discuss first disk mir-
rors and stripes. This is the most important application and can easily
be done in practice. More complex combinations are typically analyzed by
special simulation software.

Let us start with two simple examples which set the basis for all fur-
ther calculations. Let p(A) be the probability that part A fails, and p(A)
the complementary probability that part A does not fail, p(A)= 1− p(A).
This probability is given in relation to a time interval. Let us now consider
an n-way mirror. It will fail only, if all disks fail. We use the binomial dis-
tribution to calculate the probability of this failure:

pmirror =
(
n
n

)
p(A)n (1− p(A))0 = p(A)n , (A.6)

where
(n
n
)

is the number of possible combinations of failure.
On the other hand, a stripe of n disks will fail, when 1, 2, . . . , or all n

disks fail, or, the system will only work if all disks are OK:

pall disks work =
(
n
n

)
(1− p(A))n p(A)0 = (1− p(A))n .

That gives the failure probability that at least one disk will fail as

pstripe = 1− (1− p(A))n . (A.7)

Let us go back to the two-fold redundant systems: those are systems
which survive even if one disk fails, but fail if a second disk fails (in some
configurations, only specific combinations of failing disks lead to a system
failure). Specifically, the system only fails, if the second redundant disk
fails during the outage of the first failed disk. This circumstance is not
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reflected in the general Eqs. (A.6) and (A.7). We need to consider the time
intervals in question. Here a new term, the mean time to repair (MTTR),
comes up. We divide a year (8760 h) by the time that is needed to repair
the failed part, to get 8760/MTTR possible intervals of repair actions. The
probability for failure during such a repair activity p(A) is given by

p(A)= AFR
8760/MTTR

= R , (A.8)

where R is the repair time failure rate. If we look for failure during a re-
pair interval, we have to substitute p(A) in Eqs. (A.6) and (A.7) with R.
Because these probabilities relate to only one interval, we have to multi-
ply the end result with 8760/MTTR to get the average failure rate of the
whole system in 1 year.

With these formulas we could calculate arbitrary configurations; how-
ever, for more complex configurations computer-modeling software is used
in practice.

A.4 Raid Configurations

Section 5.2.1 on p. 109 explained how Raid, the redundancy method for
disks, works. Let us now calculate the AFRs for different Raid levels:
first we compare Raid10 with Raid01. Raid10 is a stripe of mirrored disks
with the failure probability of Eq. (A.6); Raid01 is a mirror of two stripes,
with a failure probability of Eq. (A.7). These configurations were already
illustrated in Figs. 5.8 and 5.9.

The main difference is the situation after one disk has failed: in a
Raid10 configuration, we now have a single point of failure which is one
disk (the mirror to the failed disk); with Raid01, we have multiple single
points of failure, any disk in the not failed stripe would lead to a failure
of the whole system.

� Raid01

With Eqs. (A.6) and (A.7), we get for the failure rate of a Raid01 system
with 2n disks

AFRRaid01 =
(
1− (1−R)n)2 8760

MTTR
. (A.9)

� Raid10

Using the same approach, we get

AFRRaid10 =
(
1−

(
1−R2

)n) 8760
MTTR

. (A.10)
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Let us consider AFRRaid10 and AFRRaid01 using the Bernoulli approx-
imation (1− x)n ≈ 1−nx for small x:

AFRRaid01 ≈ n2R2 8760
MTTR

,

AFRRaid10 ≈ nR2 8760
MTTR

.

That shows that the failure rate of Raid01 increases quadratically
with increasing number of disks n, whereas for Raid10 it grows only lin-
early.

� Raid5 and Raid3

Let us now consider a system with “normal” Raid protection. This means
a system with n data disks and one additional disk taking parity infor-
mation. It applies to both Raid3 and Raid5 protection: a failure occurs, if
at least two disks fail simultaneously (which means the second disk fails
before the repair activity of the first disk is finished). We will label both
cases with Raid5.

Here the binomial distribution gives the solution

AFRRaid5 =
[
1−

((
n+1

0

)
R0(1−R)n+1

+
(
n+1

1

)
R1(1−R)n

)]
8760

MTTR

=
[
1− ((1−R)n+1 + (n+1)R(1−R)n)

] 8760
MTTR

. (A.11)

We simplify this equation using the Bernoulli equation to second order
to achieve a formula which can be used easily in practice:

AFRRaid5 ≈
n(n+1)

2
R2 .

Note that the failure rate increases faster than n2 with increasing
number of disks n. To calculate MTBFRaid5 (which is the mean time to a
real data loss, sometimes labeled MTTDL), we have to divide the hours of
1 year by AFRRaid5:

MTBFRaid5 =
2×MTBF2

disk
n(n+1)MTTR

.

� Double Parity Raid

Several systems introduced recently a higher protection, double parity
Raid (also called Raid6 or RaidDP). That uses a second disk for data pro-
tection, which holds additional parity information. The system only fails,
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if three (or more) disks fail simultaneously. To calculate the probability,
we use the same approach as before:

AFRRaidDP =
[
1−

((
n+2

0

)
R0(1−R)n+2

+
(
n+2

1

)
R1(1−R)n+1

+
(
n+2

2

)
R2(1−R)n

)]
8760

MTTR

=
[
1− (1−R)n

×
(
1+nR+ n

2
R2 + n2

2
R2

)]
8760

MTTR
. (A.12)

From a mathematical viewpoint many more configurations are possi-
ble, and these use more disks for parity information and can recover more
simultaneous single-disk failures [14]. However, none of them are imple-
mented in products today. With current technologies we see no need to
go beyond RaidDP. The additional complexity of even higher Raid levels,
as well as negative performance implications (i.e., to calculate the parity
information and to read/write to the additional disks) does not pay off.

Comparison of Raid Configurations

Let us now apply Eqs. (A.9)–(A.11) and (A.12) to understand the reliabil-
ity of different disk configurations, and get a feeling for the numbers.

Let us first look to the dependency of AFRsystem on different numbers
of data disks (Fig. A.1).

“Number of data disks” means that we do not count the disks which
provide redundancy. In this view the same number of disks also means
the same usable data capacity. It is interesting to use it, when we want
to discuss how much capacity a Raid group could or should have. For one
disk, Raid01, Raid10, and Raid5 give the same number, as in this case we
have one disk and one mirror disk for all Raid levels. One data disk for
RaidDP means that we have a total of three disks, one for data and two
additional disks for redundancy. Obviously, this leads to a much better
(smaller) AFR. With increasing number of disks, the AFR increases with
different slopes. Raid01 shows the worst behavior, as expected. Raid10 is
better than Raid5, because with Raid5, two arbitrary disk failures will
lead to data loss. With Raid10, after one disk has failed there is only one
other disk which would lead to data loss if it failed.
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Fig. A.1. Dependence of the annual failure rate for different disk configurations
on the number of data disks (see text). The annual failure rate for a single disk is
0.029; the time to repair of a single disk is 8 h (assuming a hot-spare disk – 8 h is
the time for synchronizing the data)

It is not a well-known fact that Raid10 shows better protection than
Raid5, and is about a factor of 10 for 20 data disks. This is an additional
advantage of Raid10 besides the better performance. However, this ad-
vantage comes at the additional cost of more disks needed for redundancy,
as we will see later.

RaidDP shows by far the best values, which is expected as here three
disks need to fail to get data loss. But with higher numbers of data disks
(some hundreds), the lines for Raid10 and RaidDP cross – then Raid10
becomes the most reliable configuration. This is when the probability that
three arbitrary disks will fail becomes higher than the that for the failure
of a specific pair of disks.
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In the configuration considered we assume the existence of a hot-spare
disk, which translates to a short time to repair a failed disk of 8 h.1 With-
out a hot spare, a repair time of 48 h is realistic. This would lead to 6 times
higher AFR values for Raid01, Raid10, and Raid5, and a 36 times higher
value for RaidDP.

But a hot spare is not only good for improving the AFR values. It also
allows the real repair action (when the technician replaces the broken
disk drive) to take place on a (again) redundant configuration. This gives
protection against human error, e.g., when the technician replaces the
wrong disk, which happens from time to time.

Let us now review how many disks a Raid group should have. For this
discussion we plot the same instances but in relation of the total number
of disks, see Fig. A.2 on the following page. Here Raid5 is worst (but we
need to note that Raid5 provides most disk space). RaidDP is still the
best, as we expected.

Both graphs from Figs. A.1 and A.2 look at the situation from one
perspective, but do not show the full picture. Let us combine the number
of disks and the capacity provided in Fig. A.3 on p. 371. Assume that we
want to combine eight disks into one raid group. What are the possible
capacities and corresponding AFRs? Raid5 shows the most capacity, but
the worst AFR. RaidDP seems to be the best compromise between (very
good) AFR and capacity. The other Raid levels are not competitive in this
scenario (which ignores features like performance).

If we look at Figs. A.1–A.3, all the AFR numbers look very good – why
should we care at all? First, these are averages: in order to have a good
level of confidence for the real situation, the numbers need to be much
better than the average. Second, there are circumstances when multiple
disks are unavailable at the same time (e.g., controller failure) – this will
be discussed later. Third, there are bad batches of disks, which can show
significantly higher AFRdisk values for the single disk than the number
provided by the vendor. And, to make this worse, if you got disks from a
bad batch, you can expect that many disks from that batch are in your
array. How bad can AFRdisk be? That is hard to say, as such numbers
are typically not measured or are not published. Our experience is that a
factor of 20 is realistic. Figure A.4 on p. 372 is the same as Fig. A.1, but
with 20 times higher AFRdisk. These numbers speak for themselves – we
need to be careful!
1 Note that the time for data synchronization to the hot-spare disk depends on

the Raid level: Raid10 is fastest, here only one disk needs to be copied over to
the hot-spare disk; Raid5 and RaidDP need more time, as here all disks need to
be read in order to calculate the parity information. This effect will not change
the general picture we describe here.
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Fig. A.2. Dependence of the annual failure rate for different disk configurations
on the total number of disks in a redundant array of independent disks (Raid)
group (see text). The annual failure rate for a single disk is 0.029; the time to
repair of a single disk is 8 h (assuming a hot-spare disk – 8 h is the time for
synchronizing the data)

So far we have only looked at disk failures. But what happens if sev-
eral disks are unavailable at the same time, caused by failure of an under-
lying component? Let us consider a fictitious disk array which consist of
two frames with eight disk drives each. Both are independently connected
to a redundant controller. Even if each frame is supposed to be redundant
in itself, it can fail. Such a failure can be caused by a microcode issue, or
if one disk fails in a way such that it blocks all other disks in that frame.2
It is obviously a good idea to have the disks and their mirrors in different
frames.

2 This can happen, if the disks in a frame are connected with a Fibre Channel
Arbitrated Loop (FCAL).
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Fig. A.3. Annual failure rate for different disk configurations, all using a total of
eight disk drives. The annual failure fate for a single disk is 0.029; the time to
repair of a single disk is 8 h

Guidelines

At the end of this section, we give some general guidelines:

• Never use Raid01, unless you use only 2+2 disks.
• Always use hot-spare disks.
• The AFR for a Raid group should be smaller than 10−4. This maxi-

mizes the number of disks to 8 (7+1) for Raid3 and Raid5, 16 (8+8)
for Raid10, and 20 (18+ 2) for RaidDP. For more disks in one Raid
group, a closer review is proposed.

• RaidDP provides the highest reliability. It should be used, if perfor-
mance and hot-spare synchronization time are sufficient.

• Make a full failure mode analysis of your disk subsystem. If there are
multiple failure scenarios, they all contribute to AFRsystem. There is
no template available for how to do such an analysis – you need to
understand the architecture and the implementation on a high level
and perhaps do some testing.
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Fig. A.4. Dependence of the annual failure rate for different disk configurations
on the number of data disks (see text). The annual failure rate for a single disk is
0.58 – a value for a bad charge; the time to repair of a single disk is 8 h (assuming
a hot-spare disk – 8 h is the time for synchronizing the data)

A.5 Example Calculations

In this section we investigate the probability of deviations from the cal-
culated averages. For example, assume a specific value for the AFR: How
large is the probability to have one, two, or three failures in one year?

We calculate this using the Poisson formula (Eq. A.2). We use n as the
time interval and p =AFR.

Example 1. Let AFR= 0.0167. That means the device is expected to fail
167 times in 10 000 years, or 0.05 times in 3 years (which we assume as
the lifetime of the system in question). With the given probability of 5%
we do not expect the device to fail at all. But on the other hand, it could
fail once, twice, or even more often. The Poisson distribution allows us to
calculate probabilities for that; the result is shown in Table A.3 on the
next page.

The calculation shows that the probability of getting one or more fail-
ures in 3 years is 4.9%, a possible situation. But if we experience two or
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Table A.3. Probability for different number of failures.

Number of failures Probability

0 0.951
1 0.048
2 0.0011
3 0.000019
> 0 0.049

more failures, we would disbelieve the value given for the AFR. This is
according to the test method we have already described.

Example 2. We have a new – low-cost – computer cluster that consist of
512 nodes (i.e., 512 computers which perform numerical calculations). In
the first month it experienced 24 failures, which corresponds to an AFR of
0.56 per node. We want to do a forecast of our expected maintenance effort
and therefore we want to know the expected variation with a confidence
of 95%. We solve Eq. (A.5) with f = 24, n = 512, and γ = 0.95. Then we
use Table A.1 on p. 362 to get c = 1.96. With that we can determine the
interval [p1, p2] = [0.035,0.061]. This means that we can expect between
18 and 31 failures per month. We decide to use 30 failures per month for
our cost calculation, as some kind of worst-case scenario. It is important
to check the evolution of the failure rates every month, to identify possible
trends (see Sect. A.6); therefore we repeat this calculation each month.
But in this first month, this is the best we can do.

Example 3. We purchased a new storage system which contains 200 disk
drives. Our vendor provided us with an AFR value of 0.0167 for each disk
of the new system. We use the method of hypothesis tests to decide if the
new system confirms the AFR value given. We want to be 95% sure about
our assessment. We calculate how many disks are allowed to fail in 1 year
so that we can believe the value, using a table with the following columns
(refer to Eq. A.1):

k = number of failed disks ,
B200,0.0167(k) = probability for exactly k disks to fail ,

k∑
i=0

B200,0.0167(i) = probability for a maximum of k disks to fail.
This needs to be compared with our
confidence level, 95% .

Table A.4 on the next page shows the result: if eight or more disks fail,
we can be 97.6% sure that the AFR value given was to small.

In this example we ignore the possibility that the given AFR value
could be too large – as customers we are not interested in that case.
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Table A.4. Verification of a given AFR value

k B(k) (%)
∑k

i=0 B(i) (%)

0 3.5
1 11.8 15.3
2 19.7 35.0
3 22.0 57.0
4 18.4 75.4
5 12.3 87.7
6 6.7 94.4
7 3.2 97.6

A.6 Reliability over Time – the Bathtub Curve

So far, we have assumed that the probability for failures is homoge-
neously distributed – independent of the age of a system. This is not cor-
rect, as parts and whole systems show more failures at the beginning of
their life (“early mortality”), when the so-called burn in takes place: Weak
systems which were produced outside manufacturing tolerances fail very
early. At the “end of life,” systems show an increasing failure rate because
their mechanical parts or electronics wear out. The probability follows a
so-called bathtub curve as shown in Fig. A.5 on the facing page. The sta-
ble failure period is the time interval when we want to use a system in
production. During this interval the weak systems have been weeded out
and failures happen in a random fashion with a homogeneous distribu-
tion, as we assumed in the calculations before. It is a challenge to identify
the time when our system in question approaches and leaves this “good”
interval.

There is a combination of reasons for this bathtub behavior. Hard-
ware shows early mortality because of production issues like not meeting
required tolerances. Good vendors invest to identify early mortality by
running the systems under stress conditions before they are delivered to
customers. The “burn in” is done by running them in climate exposure
test cabinets, where they run under low and high temperature, and high
humidity. They run under vibration conditions to identify mechanical is-
sues like bad contacts or bad solder joints, and also high and low voltage.
The goal is to walk “down” the bathtub to the middle part before systems
are delivered to clients. Such good vendors are proud of their efforts to not
send early mortality systems to customers. Ask your vendor about this to
find out what tests are done and if they are done for all systems delivered
to clients, not only for some control samples.

It is hard to predict when a system is at the end of its life. A rule of
thumb is that after 5 years of continuous operations, a system is expected
to show more failures.
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Fig. A.5. Typical bathtub curve of a system

But there is an additional reason for the bathtub behavior – perhaps
equally important: the lifetime of a system is similar to or even longer
than todays product cycles. If we purchase a new system, we typically
want to get the best and greatest: the newest model which was just an-
nounced. The risk here is that the new, much faster and better system
is not mature yet. If we purchase an early system, the vendor has no ex-
perience with it. Microcode might not be optimized for it and integration
of the different components might not have been worked out well. Ven-
dors constantly optimize their systems, based on experience in the field.
Sometimes a system purchased 1 year after its introduction looks quite
different from the early systems. We need to find the right compromise
between product innovation and maturity.

It is hard to provide good guidance for how to deal with this situa-
tion. If a system is brand new, and the vendor announces a breakthrough
from the old one, caution is required. A factor of 10 for the AFR of the
newest system and the same model after 1 year of production can be ex-
pected. If we purchase such a system, we need to review the company’s
track record and, if possible, our own experience with that vendor. We
should also review what is really new in that system design. Does it show
new technologies, or just improve on existing ones? A personal relation-
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ship with the sales representative is also helpful, as he or she often has
insight into the potential difficulties before and on announcement of the
new system. If our system runs until the end of its product life cycle, we
have also a negative effect: the system is now expected to be very ma-
ture, but it is not more in the mainstream. This means that integration
tests are focused on systems from the current (newer) products; patches
and microcode changes are first implemented on the new series and so
on. A system from an old series in a new environment becomes more and
more a contaminant, which is a reason for problems and failures.

The problem of nonconstant failure rates was tackled by the Swedish
researcher Waloddi Weibull (1887–1979). He defined a distribution func-
tion which is widely used in the area of quality engineering which now
bears his name [11].

The combination of all these effects leads to the bathtub curve. We
should be conservative and stay in the mainstream: our systems should
not be too young and not too old.



B

Data Centers

Data centers are facilities (rooms or complete buildings) where IT sys-
tems are placed. Such a facility must have specific installations, controls,
and processes to be called a data center – otherwise it is simply a room
with computers in it. Dedicated IT staff run those IT systems with specific
processes to ensure proper functioning. The department that is responsi-
ble for data centers is often named IT Operations.

Even though data centers are not essential for high availability and
disaster recovery, they provide good support for successful implementa-
tions. High availability and disaster recovery without data centers is pos-
sible, but requires much more effort. We will use this appendix to spell
out in more detail what kinds of data center facilities will help to im-
plement and retain high availability. Disaster recovery is supported by
establishing or using a second data center at the disaster-recovery site,
as described in Chap. 10.

From experience, there are four areas where errors are made most
often and that cause incidents and outages:

1. Changes introduce errors and case failures.
2. Air conditioning does not work or is not sufficient.
3. Power supply is not successful.
4. Fire protection does not work (false alarm or erroneous release).

However, this is in well-run data centers. It is hard to estimate what
error conditions would be the major root causes in data centers that do
not follow the approach that is outlined in this appendix. For example,
the potential error cause “tripping over a cable” does not appear in the
list above because we do not have cables lying around that one could trip
over. Therefore the list is a list of problems that one has to face in any
case, even if one’s preparations are good.

Data center facilities are the best form of the physical environment
that we have met so often in the previous chapters. These are rooms and
equipment that are dedicated to the task of running IT systems properly
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for a long time, with few outages. This appendix will not be a complete
guide for how to build and operate a top-notch data center; that is beyond
the scope of this book.

Broadly, data center facilities can be put up in the following categories:

• Room installations refer to issues around raised floors, cabling, and
physical security. These issues are spelled out in Sect. B.1.

• Heat and fire control are crucial to keep computers operational and
are described in Sect. B.2.

• Power control is another frequent failure area, and is handled in
Sect. B.3.

• Computer setups are the way that computers are placed in data
centers physically. This is the topic of Sect. B.4.

Let us have a look at each of those categories. But this section will provide
only an overview of the most important topics, and only those that are
especially relevant for high availability.

For example, the problem of grounding is not covered, even though it
is a very important issue in many areas of the world. As well as the issue
of water – there should be no water conduit in the room anywhere. There
are more issues, and data center facility planning is such a big topic that
it deserves a book of its own; we are just scratching the surface here.

B.1 Room Installation

Rooms in data centers are specifically equipped so that computer systems
can be installed and run in them.

� Raised Floors

They have a raised floor system, where a second floor is installed above
the actual floor. That second floor consists of removable tiles so that it is
possible to access the gap everywhere. This gap is used for air circulation
(as part of air conditioning, see later) and for cabling. Ideally, the gap
between the base and the second floor is 60 cm (about 2 ft.), but it might
be less depending on available room height.

The usage of tiles leads to the need to pay attention to the weight of
computer systems and other equipment. Today the trend is towards ever
higher levels of system integration. This often leads to more weight for
the same volume and implies that we need to consider the impact that
the weight makes on the ground at the system rack’s feet.

Just as we have to pay attention to the impact of the racks, we also
need to assure that the tiles that are on transport route are able to take
the pressure. When one needs to reinforce the tiles at a specific place
where a heavy computer system will be placed, this computer system
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must be transported to this place somehow. If it is transported in one
piece, the tiles on the way to this place might need reinforcement as well.

When your site has a raised floor, you probably also want to consider
proper drainage. Otherwise, water damage – be it from pipes or rain –
might damage the power and network connections that are usually placed
into the underfloor space. For example, moisture alarms could be utilized
to detect problems early.

� Cabling

Proper cabling is essential for high availability. There are quite a few
failure causes that can be avoided by strict cabling policies:

• When cables are lying openly on the floor, somebody can trip over them
and rip them off their jack, causing power outages, network outages,
or others.

• When cable/jack connection are strong, tripping over them can even
result in tearing out or overthrowing the connected systems.

• Long cables can be bent or damaged otherwise. Therefore it is better to
use short cables to patch panels and have structured cabling between
patch panels that can be easily tested and is redundant.

• Unmarked cables are often a source of erroneous installations. Even if
the initial installation goes right, using unmarked cables or forgetting
to mark them when their use changes is a sure recipe for an outage.
Some day somebody will unplug the cables for repairs or upgrades,
and will plug them in the wrong way.

The first thing that we insist on in a data center is structured cabling.
This term means that cabling is integrated into the structure of a building
and is independent of a specific server or specific system.1 This is realized
by four principles:

• Cabling between buildings is separated; there is a definitive transfer
point between interbuilding cabling and vertical cabling.

• Cabling between building levels – vertical cabling – is separated; there
are defined transfer points to interbuilding cabling and horizontal ca-
bling.
Vertical cabling is best done with fiber optics cables, because that cre-
ates a galvanic separation and prevents potential differences. (The
main difference of potentials is in vertical distances.) With copper ca-
ble, there might be current on the grounding.

• Cabling on a building level – horizontal cabling – has clear transfer
points to vertical cabling and system cabling.

1 Though obviously cabling is not independent of the network technology used.
Cabling for Ethernet, ATM, or Token Ring will be different, of course.
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• System cabling is only over very short distances. It should be possible
to check a system cable completely, i.e., to make optical checks without
the need to open lots of trunks or floor tiles.
Sometimes the transfer point from system cables to horizontal cabling
of the data center is not directly beside a system, then the system
cables come near other systems. That should be reduced as far as pos-
sible.

Cables should be tied: for horizontal cabling at least every 50 cm; for
vertical cabling more frequently.

It is a big advantage to place information about cabling in one’s con-
figuration management database (Sect. C.3). Then one can always query
the tool for the connectivity of systems and get initial information about
dependencies and potential error causes.

Two independent network connections for a building also means two
transfer points between interbuilding and vertical cabling, as well as re-
dundant vertical cabling. There should also be two transfer points be-
tween vertical and horizontal cabling. Each row of system racks should
have connections to both transfer points to create also redundant hori-
zontal cabling, otherwise destruction of one transfer point would cause
a connectivity outage of the whole floor. Within each system rack row,
several patch panels provide transfer points between the redundant hor-
izontal cabling and system cabling in short distances.

The transfer point between horizontal cabling and computer systems
or active network components like big switches might have dozens, some-
times even hundreds of cables. It is mandatory to use an underfloor or
overhead trunking system for such cabling to reduce the risks named be-
fore.

Such trunks must not be shared with power cables; there must be at
least 6 cm between power and copper network cables. Use bridges to cross
power and network cables, and always do so at a right angle.

� Physical Security

Major outages can be also caused by malevolent persons who get access to
a computer’s console – still access to the physical console has often more
rights associated with it. There is also the risk of evildoers who damage
computer systems physically with full intent in an act of sabotage.

Security and access control for a data center is usually established
anyhow, for data security reasons. These measures are also valid precau-
tions in the realm of high availability and will help to reduce the risk of
physical sabotage. Video camera surveillance will enable faster detection
of physical sabotage, or identification of the culprit after the fact.

For forensic analysis, one needs to know when somebody was in the
data center and for how long, and on which systems this person worked
in that time. Physical security must provide answers to these questions.
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Server operations monitoring, often round-the-clock, is also sometimes
integrated into physical security. For large data centers, these two func-
tions are separate though. Even though the fully automated data center
is a sought-after vision of the future, having human operators handle in-
cidents and outages is still a valid precaution to reduce the risk to highly
available installations. Appendix C presents more issues around proper
operations processes.

B.2 Heat and Fire Control

Lots of computers and other devices in data centers produce lots of heat.
This is so important that an acronym has been built around the need
to handle this issue: HVAC for heating, ventilation, and air condition-
ing. With all this heat and with dangers of smoldering burns of electrical
parts, fire is always an imminent risk in data centers.

� Heat Control

Computers, in particular high-end servers, are notoriously influenced by
the temperature they operate at. Their electronic components produce
so much heat that they will shut down in short time if nothing is done to
reduce that heat. The heat must be dispensed and transported elsewhere.

Actually, typical IT systems will work for quite some time at higher
room temperature. But even if they continue to work in warm areas, they
age faster and the probability of failures will become higher (see the dis-
cussion of the bath tube curve in Appendix A.6).

Some time ago, computers had water cooling systems. They did not
heat up the room themselves. Then computer systems got air cooling.
Early systems relied on data centers where cold air is blown out of the
floor and they emitted hot air at the top, where an air conditioning sys-
tem could handle it. Nowadays, vendors build computers as they like:
they ingest cold air where they want and blow out hot air where they
want (most of the time not at the top).

This leads to the requirements:

• Where cold air is sucked in, there must be a cold air current.
• Where hot air is blown out, there must not be a cold air inlet of another

system.

It might well be that future systems will deploy water cooling again.
The trend towards ever higher system densities per volume creates heat
problems as well. And water cooling needs less energy than air condi-
tioning. Since the energy for air conditioning costs easily more than the
whole server, this is an interesting aspect that would save ongoing costs
and raise system availability.
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Ventilation is used to dispense heat evenly within a room, but will not
cool it. Since humans feel the windchill factor more than the real temper-
ature, it is a high risk to depend on one’s senses for room temperature.
Instead, good-precision air conditioning should be used to cool down the
whole room to roughly 18°C (about 64°F).

Good precision here means that the air flow in the room is observed
and planned. There are sprays that emit a kind of fog that can be used
to visualize air currents and help to analyze why a computer system is
getting too hot. Of course, first of all one has to measure both the tem-
perature in the computers and the temperature at multiple places in the
room. Without that information one would not even know that a system
gets too hot or that there are hot spots in a room.

When new computers are installed in a data center, it must ensured
that the air conditioning system has enough capacity for the new equip-
ment as well. Otherwise, availability of all systems in the data center is
endangered, not just that of the new equipment.

This is an important consideration as new vendors market new sys-
tems with ever-increasing packing density, e.g., blade servers. Often,
racks are planned and assembled by the IT staff and not by vendors.
If one has not very strong air conditioning, one needs to pay attention
to the heat production and dispensation for such dense systems. Some-
times it is necessary that one does not fill up the rack completely, but
leaves some space for air circulation and less heat production.

Air conditioning is a technical system like any other, and is bound to
fail as well, i.e., air conditioning can well be the single point of failure in
a data center. To combat this, a backup air conditioning system should
be in place, or the different components of the air conditioning should be
redundant. As with all redundant technology, one needs to manage the
redundancy, e.g., to monitor that the components run at all and exchange
or repair them otherwise.

Such monitoring is done in a HVAC control environment. Best-of-
breed installations make that control environment redundant again, with
manual management in the case of failures. We might also attach the
HVAC environment (both the control component and the actual air condi-
tioning system) to the uninterruptible power supply (Sect. B.3), to protect
the heat control against power outages.

But HVAC monitoring does not consist of room-temperature sensors
alone. Most computer systems allow the temperature of the CPU or fans
to be queried. Computer monitoring should observe such temperatures as
well, with properly defined escalations when the temperature is becoming
too high. (Data sheets of hardware components usually tell about their
typical and best operating temperature.)

Good working air conditioning is sine qua non for high-availability
installations in data centers: without it, the servers will not run.
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� Fire Protection

Since computer equipment produces heat in exuberance, and since any
electrical component is in danger of smoldering, fire is one of the most
probable risks to the physical environment. Therefore, good risk mitiga-
tion strategies call for precautions to detect fire early and also to fight it
without damaging all the equipment.

A very important facility is early-warning fire and smoke detection
systems. They can often detect problems before fire actually breaks out.
Better systems even come with sensors to do spot detection, i.e., to de-
tect the place in the room where the smoke comes from. Sometimes they
measure particles given off by hot components and trigger alarms if those
particles pass thresholds. With such fire prevention systems, one can of-
ten turn off problematic devices before an actual fire breaks out.

Still, that device will be unusable from now on. But that is the known
area of high-availability setups: there will be redundant components that
can take over functionality. This is one example where internal monitor-
ing of any computer component is not sufficient. Sure, we would notice
that the component gets too hot and might be able to disable it. But if
it has started to smolder already, disabling the component might not be
sufficient; instead one has to turn it off physically, maybe even remove it
from the room as soon as possible.

The early-warning fire protection system is only the first line of de-
fense and it would be foolish to rely on it alone. The fire could break out
faster than our reaction time, or it could be a spark-triggered fire without
slow buildup of smoke. Then we need fire extinguishers or a fire suppres-
sion system.

Conventionally, fire suppression systems are water sprinkler systems.
These are not of much use in data centers, as they damage the electrical
equipment beyond repair. The same is true for foam-based fire extinguish-
ers – if anybody uses water or foam in a data center, the chances are high
that disaster recovery for the whole site will be tested in real time soon
after.

Instead, data centers utilize fire suppression systems that push out or
reduce oxygen in the air, so that fire cannot spread anymore. Originally,
CO2 was used, flooded from the floor. This flooding creates mechanical
pressure that is so high that it damages cabling. In addition, it is acidic;
with water it forms carbonic acid. Of course, it is also toxic, but almost all
fire suppression materials are toxic, so that is not a differentiator.

Then halon was used often, a gas that pushes oxygen out of the room.
But if people remain in the room without emergency breathing oxygen
supplies, or if they are unconscious, usage of a halon-based system is often
deadly. (Well, smoke and fire themselves are also often deadly.) But halon
is also one of the chemicals that destroys stratospheric ozone; therefore
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it was banned in the EU, and in the US the EPA strongly encourages the
use of non-ozone-depleting alternatives.

Today, halon alternatives like FM-200 or Inergen are available. FM-
200 belongs to the class of halocarbon agents that extinguish fire primar-
ily via the absorption of heat, whereas Inergen is an inert gas agent (it
consists of a mixture of argon and nitrogen) that works via oxygen deple-
tion.

Last, but not least, fire protection zones are valuable. A fire extin-
guisher can operate only in those areas where fire was detected. Physical
fire containment strategies are part of such a strategy and should be con-
sidered too. Fire doors or other physical firebreaks can be used to contain
fire within a small physical area and confine damage to some of your
highly available systems, and protect against spreading to all of them.

B.3 Power Control

Other frequent sources of computer failures are power outages or fluctu-
ations in power frequency and power strength. It is mandatory for any
data center to protect against these failures.

As a basic level of protection, we establish uninterruptible power sup-
plies (UPS). These are devices that are responsible for maintaining a con-
tinuous and stable power supply for the hardware. UPS devices protect
against some or all of the nine standard power problems:

1. Power failure
2. Power sag (undervoltage for up to a few seconds)
3. Power surge (overvoltage for up to a few seconds)
4. Brownout (long-term undervoltage for minutes or days)
5. Long-term overvoltage for minutes or days
6. Line noise superimposed on the power waveform
7. Frequency variation of the power waveform
8. Switching transient (undervoltage or overvoltage for up to a few

nanoseconds)
9. Harmonic multiples of power frequency superimposed on the power

waveform

Good data centers never connect any computer equipment directly to
the power grid, but always place a UPS in-between. This it at least true
for all highly available systems. A power distribution unit (PDU) connects
the UPS devices to the computers.

As for every other device, UPS systems may be defective themselves,
as well as PDUs; therefore it is necessary to monitor them all the time
to detect failures early. Detecting UPS failures during power failures is
bound to lead to major outages.
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Installation of new hardware in the data center always has to be ac-
companied with an analysis of power demand changes. It must be checked
that the UPS will handle changed power requirements, otherwise it must
be upgraded as well (which can be quite expensive, by the way). Other-
wise, the new hardware will pose a risk to all other installations in the
data center; e.g., installation of an unrelated business foundation server
could damage our highly available mission-critical server and lead to a
major outage.

UPS devices contain batteries and will protect against short power
failures in the range of a few minutes. If a power outage takes longer,
one must either start disaster recovery and switch to a disaster-recovery
site, or one needs to have backup generators (e.g., diesel generators) that
generate power themselves.

Shortly before the batteries are dead, UPS management software will
trigger automatic shutdown of attached systems since proper shutdown
is much better than crashing the systems – at least the data will be in a
consistent state. For high availability this might have consequences be-
yond the actual service: if some other system depends on this service,
its availability will be affected as well; and if the dependent system is a
failover cluster, it may well lead to perpetual failovers in the cluster.

Another, but more expensive, possibility to handle power outages is
to get two independent power grid source connections. Then all elements
of the electrical system are redundant, all servers are connected to both
grids; outage of one power grid will be handled by the second grid. But
we must be realistic and must see that this is very hard to realize. The
problem here is not to get two power connections – any sales person of
any utility company will sell that to you. The problem is the innocent
term independent: real independence is seldom in power grid structures,
and in accordance with Murphy’s Law the excavator will rip apart the big
grid cable in the street that is used for both input sources.

By no means does that mean that we should not strive for redundancy
in our power supplies and also our power grid source connections. We can
test for functional redundancy of our own installations, but will not be
able to test the redundancy of grid connections.

Redundancy for internal power supplies, for UPS systems, and also for
all connections is necessary for several situations. First of all, these are
hardware components that wear with usage and where the probability
of failures is quite high. Therefore it is advisable to protect against such
failures at the cause and add redundancy already there. In particular,
UPS devices use batteries that have only a limited lifetime.

Second, redundant power installations allow repair activities without
disturbing the actual system usage. Maintenance work at the UPS can be
done as needed if one has another UPS system that is used at this time.
The same holds for power connections and power supplies.

Yet another issue to consider is the effect of powering off and on of
computer systems. We need a dependency list of computer systems just
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for powering them off cleanly: the dependency graph shows us which sys-
tems are independent and can be shut down first. Otherwise, a cluster
component could notice the shutdown and could trigger failovers of de-
pendent components. The same holds for power-on sequences.

Powering on must be done carefully for other reasons. During power-
on, most components draw much more power than in normal run situa-
tions. This can bring our overall power supply and the UPS to their limits.
Therefore one should not turn on all devices at the same time. Instead,
one should start them in a preplanned sequence, to play it safe both with
power consumption and with service dependencies.

In summary, power outages are a risk with a high probability for
highly available systems. Protection against power outages is possible,
though expensive if one goes the last mile and utilizes a backup genera-
tor. At least, usage of UPS devices is mandatory, as is monitoring those
devices.

B.4 Computer Setup

At first glance, the way that computer systems are physically set up is
not relevant for high availability. It does not matter for the functionality
if a server is a white-box medium-tower system or if it is mounted in a
rack cabinet. But that first glance only looks at the failure situation and
ignores the repair situation.

We should place our servers into proper rack cabinets (mostly indus-
try-standard 19" racks). This leads to better cabling, no traps by cables
or boxes, stable ventilation, and good access to the system plugs. Proper
labeling of each system helps to locate it quickly in the case of necessary
repairs.

Be careful when you mount systems into a rack. Racks can totter or
even tumble if you pull out systems at the very top. This can have dis-
astrous consequences for other systems in that rack and destroy their
availability, i.e., maintenance work at a system with low priority can in-
fluence availability of a mission-critical system if they are in the same
rack.

Such rack cabinets, as well as mainframe-type computer systems and
big storage units are placed into rows in a data center. Such proper room
layout also helps to identify computer systems quickly in the case of emer-
gencies.

All these precautions will reduce the mean time to repair. One is able
to locate a failed system quickly, one can access the system’s components
properly, and one has ordered and labeled connections that will be less
probably reconnected erroneously.

Remember the start of this book – mean time to repair is the setscrew
that is best to turn to raise our overall availability, as the mean time
between failures cannot be changed as easily.
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Service Support Processes

This book focuses on the principles, architecture, and implementation of
high availability and disaster recovery. As such, it covers 90% of the pro-
jects that introduce those capabilities in IT environments. But as every-
body knows, there is another 90% to get the job done: run the systems
without deteriorating them. This is the job of the data center staff and of
the system administrators who manage and maintain the systems.

The importance of the run-the-systems phase to retain high-availabil-
ity and disaster-recovery capabilities is generally accepted but often not
emphasized enough.

No tool and no automation can save you from bad opera-
tions – bad operations will make any good design fail. It is
the biggest threat to high availability.

There is a de facto standard for managing IT operations, called the
Information Technology Infrastructure Library or ITIL for short. ITIL is
a process-centric view that gives guidelines for best-practice data center
management. ITIL was created1 and is owned by the Office of Govern-
ment Commerce (OGC) of the UK’s Treasury.

ITIL defines the task of data center management in five areas:

1. The business perspective
2. Managing applications
3. Deliver IT Services
4. Support IT Services
5. Manage the infrastructure

IT service delivery [7] is at the heart of this whole book since it
contains the descriptions of availability management, service level man-

1 Actually, ITIL was created in the late 1980s by the Central Computer and
Telecommunications Agency (CCTA), which was merged into OGC in April
2001.
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agement, and IT service continuity management processes. We have met
these processes several times throughout this book.

IT service support [6] is an area that has relevant material for the
scope of this section. The area contains process descriptions of:

• Service desk
• Incident management
• Problem management
• Configuration management
• Change management
• Release management

When we apply these processes, we will have a very good chance that our
run-the-systems job is improved and that the systems will stay highly
available and disaster recovery will remain possible.

In the rest of this section, we will have a look at all those processes
except service desk.

C.1 Incident Management

In ITIL terminology,

An ‘Incident’ is any event which is not part of the standard
operation of a service and which causes, or may cause, an
interruption to, or a reduction in, the quality of that ser-
vice.

The goal of incident management is to restore system functionality (as
defined in the service level agreement) as quickly as possible.

Such an event may be a an application or hardware failure, or it may
be a service request. Incident management is engaged in detection and
recording of incidents, classification, initial support, and resolution.

The focus of incident management is the system’s user. Its objective
is to get the user working again as quickly as possible. Workarounds are
perfectly valid resolutions; the underlying root cause of the incident may
not be known and there is often not enough time to research it.

The cause of incidents may be obvious and can be remedied in short
order. Then no further action is needed. But when the underlying cause
is not known, one should try to find a workaround and transform the inci-
dent into a problem, see Sect. C.2. It is difficult to decide when this prop-
agation is done. If it is done too often, resources will be bound that could
improve the IT service otherwise (or could make operations cheaper). If it
is not done often enough, structural problems are uncovered and symp-
toms are fought all the time in incident management, damaging service
availability.
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This is an important connection between incident management and
high availability that is often ignored. One can learn a lot by looking at
incidents that are communicated by the system’s users or are triggered
by automatic monitoring systems. Often these incidents give new mate-
rial for failure scenarios of future projects, or they cover up deeper-level
problems that should be addressed to improve availability.

But why do incidents happen at all? At first sight, high availability
should ensure that no incidents happen; all are handled by the redundant
systems. But that is not the case in practical terms:

• When a component fails, it must be repaired. While this might be con-
sidered as “part of the standard operation,” many organizations choose
to handle such failures also via their established incident manage-
ment processes. After all, during the duration of repair, the missing
redundancy (or the repair itself) may cause interruption of the ser-
vice.

• We have seen several times that redundancy of components must be
managed somehow. Time and time again we used the formulation that
it may be managed by administrators. But how is this done in practi-
cal terms? Operational procedures are the answer, and here incident
management enters the room. It is an established process and proce-
dure infrastructure that can trigger resolution of failure by manually
establishing the redundant component.

• Murphy’s Law is true. Anything that can go wrong, will go wrong over
time.2 Even if the project’s implementation has the best analysis, real-
ity will bite and there will be incidents in areas where experience was
not sufficient, or assumptions were wrong, etc.

In the realm of high availability and disaster recovery, it is also rele-
vant that escalation procedures are part of the incident management pro-
cess. Such escalations are needed when the incident cannot be handled in
the normal service level agreement repair times and when it evolves into
a major outage.

C.2 Problem Management

Problem management is concerned with root cause analysis of failures,
and with methods to prevent them in the future. The ITIL documents
define the topic of the study as follows:

A ‘Problem’ is a condition that is either identified as a re-
sult of multiple Incidents that exhibit common symptoms.
Problems can also be identified from a single significant

2 Murphy’s Law does not mean that every possible failure happens immediately.
It means that every possible failure happens eventually.
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Incident, indicative of a single error, for which the cause
is unknown, but for which the impact is significant.

Problem management is intended to reduce the number and severity of
incidents, and therefore proper implementation of this process is of high
importance for high availability.

Root cause analysis (RCA) of outages and failures is the first step for
continuous improvement of an IT system. Its result should:

• Enable incident management to resolve incidents faster by providing
a database of known errors and appropriate resolutions

• Improve IT system implementation and operations with changes that
prevent such problems in the future

This means that the goals of problem management are twofold: with
the support for incident management we try to reduce the needed mean
time to repair, which increases our availability. With changes to the in-
stalled systems that prevent such problems, we increase the mean time
before failure, also with the result of increasing our availability.

Problem management is not only triggered by incidents. Technicians
often detect problems during their normal day-to-day work. They stum-
ble regularly over installations or configurations that do not look right.
Such preliminary estimations are quite often correct and are grounded in
solid experience. We must not forfeit that experience and must incorpo-
rate it into proactive problem management, i.e., instead of adding a “fix
me” comment in some script that will soon be forgotten, system adminis-
trators should be encouraged to log the issue in a problem management
database for later analysis by peers. It is best to frame such encourage-
ment in real processes: establish metrics as to who discovered and ana-
lyzed successfully the most problems, and give out awards to your employ-
ees who are not too shy to name areas where improvements are needed.
Such proactive problem management is a very valuable tool for improving
availability and asserting the success of disaster recovery.

One of the biggest problems with problem management is the ten-
dency that root cause analysis results are not followed through. Time
and time again it happens that a problem is discovered and analyzed,
the root cause is found, but no change is triggered owing to the inertia
of the IT system that is running. “Never change a running system” is a
very good approach at first, but there are limits to it. When known errors
exist and cost/effort-benefit analysis for a change is positive as well, the
high-availability objective should take a front seat and should enforce the
change.
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C.3 Configuration Management

Configuration management is concerned with management of the knowl-
edge of our systems. Its central term is the configuration item (CI) that
ITIL defines by example. Their example can be abstracted into the follow-
ing definition:

A CI is a hardware, software, service, or documentation
asset, or one of its subcomponents that is independently
managed. A CI has a type, a unique identifier, and arbi-
trary relations to other CIs, the most important are “con-
sists of” and “uses.” A CI may have attributes (key-value
pairs) that describe it further.

You will immediately have noticed that this definition is very similar to
our component term that we introduced in Chap. 3. So here we find a
standardized process to manage components that we need to analyze sys-
tems.

Configuration management collects information about system compo-
nents. It tracks actively changes and builds a knowledge base that can be
used by other ITIL processes and must be kept up to date by other pro-
cesses too. This knowledge base is named the configuration management
database (CMDB).

The CMDB should keep all information:

• About configuration items
• Their attributes
• Their relationships
• Their version history
• Their configuration
• Their documentation

Sometimes, configuration and documentation are simply seen as attri-
butes; sometimes they are mentioned to emphasize their importance.

This sounds to good to be true, doesn’t it? Here we have the perfect
source and storage for our architecture components, the dependency dia-
grams, and the redundancy information that we need so urgently in high-
availability and disaster-recovery projects. Figure C.1 on the next page
illustrates that goal.

Well, the reality is that existing CMDBs seldom fulfill the need of such
projects, and that has several reasons, as will be shown now. A very im-
portant part of configuration management is the decision about the gran-
ularity of CIs. That decision is influenced by two factors:

1. In the ITIL model, only CIs can have relations, namely, to other CIs.
It is not possible to have a relation between or to attributes. That is
what distinguishes them from attributes, otherwise every attribute
could be a CI itself. (The attribute name would be the CI’s type, the
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Fig. C.1. Theoretical usage of the configuration management database (CMDB)
for high availability and disaster recovery

attribute’s value would be the CI’s identifier, and an “is-described”
relationship would exist between the CI and these new attribute CIs.)
That is, when we want to express relations in the CMDB, we need to
make that component a CI. When we do not want to express relations,
this component can often be modeled as an attribute.

2. CIs are the preferred unit of management by other ITIL processes,
in particular change, incident, and problem management. Of course,
they can and will refer to CI attributes as well, but that is more
clumsy than referring directly to CIs. Depending on their demands
of granularity, the CMDB model will be coarse or very fine grained.

As an example, a network interface card (NIC) may well be an at-
tribute of a CI server and its own CI. Both are valid models:

• If change and incident management only refer to servers and describe
the error message according to the server, noting the NIC existence
(maybe with associated configuration information like the MAC ad-
dress) is sufficient.

• Treating the NIC as its own CI allows us to express its relation-
ship to other parts, e.g., a redundancy relationship to another NIC.
It also allows us to express the exact components that are addressed
by changes. On the other hand, that makes change descriptions much
harder to build as one often does not know up-front what components
a change will address. In fact, keeping fine-grained CIs consistent, up
to date, and with a sensible history that can be assessed by people is
very hard.
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Table C.1. ITIL objectives for CMDB (excerpt). CI configuration item

ITIL process CMDB support

Incident management Automated identification of other affected CIs when
any CI is the subject of an incident.

Identification of owners, responsible IT staff, vendor
contact information, support contract details

Problem management Integration of problem management data within the
CMDB, or at least an interface.

Easy interrogation and trend analysis reports
Change management Identification or related CIs affected by proposed

change to assist with impact assessment.
Record CIs that are affected by authorized changes.
Maintenance of a history of all CIs.
The ability to show graphically the configuration and

input information in that graphical representation.
Enable the organization to reduce the use of

unauthorized software
Release management Record baselines of CIs and CI packages, to which to

revert with known consequences.
Register CI status changes when releases are

implemented.
Support roll-out across distributed locations by

providing information on the versions of CIs and
the changes that are incorporated into a release

But our dependency diagrams that we use for high-availability and
disaster-recovery design need to express their redundancy and thus needs
them as CIs. Usual CMDB data schema modeling happens independently
of high-availability or disaster-recovery projects, is oriented towards the
need of other ITIL processes, and does not take our demands from that
area into account. Therefore, the chances are low that the CMDB is really
a good place to store our complete dependency and redundancy data.

According to the ITIL, the CMDB is the all-singing all-dancing data
store that answers every question about our systems and their configu-
ration. Table C.1 lists just a few of the intended usages that are already
overwhelming.

Add the point that industry pundits agree that a single central CMDB
is not feasible and federated CMDBs will be the way of the future. Though
they do not explain in technical details how such a federation of CMDBs
is supposed to work and how the CMDBs are supposed to be interlinked.
(Vaguely mumbling about “Web Services” should not be seen as an expla-
nation.)

In practice, many existing systems are quite crude and not as inter-
linked as the theory wants it. This may change in the future as more and
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more data centers orient their management procedures towards the ITIL.
But good CMDBs are hard to establish, cost a lot of effort to maintain, and
their benefits are not immediately visible. They are also a technical mea-
sure, and most ITIL introductions concentrate on the management and
process side and leave aside radical technical improvements.

This reflection leads to the point that while configuration manage-
ment and especially CMDBs could contribute a lot to our work on high
availability and disaster recovery, it is not probable they will do so in the
short term to the midterm.

C.4 Change Management

Good change management practice is essential to keep high availability
and the ability to do disaster recovery. Change management is the pro-
cess to control changes in your IT environment, be they caused by change
requests or by problem management. As the ITIL says,

Change is the process of moving from one defined state to
another.

Changes to your systems should be:

• Proposed with justifications; change requests without specifying cause
and effect in technical details are not acceptable

• Reviewed by subject-matter experts if they introduce new single points
of failure or new dependencies, to make sure that high-availability or
disaster-recovery capabilities are not damaged

• Checked to see if any change in a primary system is accompanied with
a change on the respective disaster-recovery system

• Approved by a change advisory board that evaluates their business
impact and coordinates the changes with other changes

With proper change management in place, the exposure to risk is min-
imized. For our highly available systems and our disaster-recovery pre-
caution, any change is surely a risk and may be a chance. This cannot be
emphasized enough: every change is a risk to availability. A new function-
ality or a new component is introduced into a running IT system. Both the
migration to new functionality or new components, and the new compo-
nents themselves may not work. Testing will show where the function-
ality works, but not where it may fail. As Murphy’s Law says, “anything
that can go wrong, will go wrong over time.”

It is thus very important that every change comes with a back-out
plan, a method to revert any changes to the starting point. This back-
out plan is the last resort when something goes wrong and the risk of a
change manifests itself as a real failure.
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On the other hand, the risk of change can be worth it. If it increases
reliability of the system overall, we have exchanged the increased short-
term risk of change against the decreased long-term risk of failures. That
is what the reviews are for, to analyze a change request and judge the
associated risk and benefit. Experience is needed for such analysis and
judgment; only many years of seeing both good and bad practice gives
this ability.

For mission-critical highly available servers, it is mandatory that ev-
ery change is reviewed in detail by a senior subject-matter expert. For
servers in the business-important or business-foundation categories, it is
often sufficient to do summary reviews of changes and dive into detailed
reviews for changes with more impact.

When you do a change to a server with disaster recovery in place, do
not forget that you might have to update your Disaster Recovery Emer-
gency Pack as well. Printing out up-to-date information is often forgotten,
as it is inconvenient and seen as inefficient. But when a major outage oc-
curs, one is glad to have material that is independent of systems that
might be destroyed.

C.5 Release Management

Release management is the process to bring new software, hardware, or
configurations into production. According to the ITIL,

A Release describes a collection of authorized changes to
an IT service. It is a collection of new and/or changed con-
figuration items which are tested and introduced into the
live environment together.

For highly available systems, this is an extremely important area. Re-
leases must be identified, planned, and must be tested thoroughly before
they are put into production. Together, change management and release
management are the crucial processes that ensure ongoing availability
and serviceability of IT services:

• Change management makes sure that the organizational aspects of
changes – coordination with business owners, announcements, re-
views, and approval – are done right.

• Release management ensures that the technological aspects of changes
– planning, tests, and roll-out – are done right.

Release management has several important duties:

1. To determine the release unit
2. To testing the release unit
3. To roll out the release unit
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First, we need to determine which changes are released together. This
set of changes is called the release unit. As so often with such processes,
that decision is a matter of experience. The change set must neither be
too small nor too large. If it is too small, we have lots of releases and ev-
ery release has associated risks that are independent of its size (e.g., the
roll-out might not work). We do not want to introduce a new release for
every minor change. On the other hand, if a release becomes too large,
we have the issue of many independent changes that can go wrong and
have often unknown interdependencies. Proper testing of large releases
is very difficult and therefore error-prone. A release unit should be large
enough to qualify for an improvement of the IT service, but should focus
on a few improvements and should not lump together many changes from
different areas.

When a release unit is tested, it must be ensured that not only func-
tionality tests are done. This is the most common error in release unit
testing: only the working functionality is tested, not the failure situa-
tions. That is, there is a description of what a change is supposed to do.
Tests most often determine if the changed IT service really has the new
functionality, and if the old unchanged functionality still works. In addi-
tion, back-out plans must be tested, we will look at them again later.

But it is as important to test how the new components react in the
case of failures. For example, if we have utilized a new application in a
failover cluster, does failover still work? In such a situation, it is not only
important to start the new service on one cluster node and see if it works.
It is as important to cause several failovers, abort the processes, maybe
damage the data store, and check if restarts, service switches, and data
consistency checks still work. Similar tests must be done when new hard-
ware is installed. For example, a new storage unit must be thoroughly
checked that redundant cabling is really done correctly, etc.

When hardware changes are rolled out, it must be checked again (this
check is also done during planning) that the new hardware does not dis-
turb the disaster-recovery concept. For example, adding new storage to
the primary site usually means that we also need to add it to the disaster-
recovery system. Also, replication must be established for data on the new
storage system, or it must be checked that the available replication still
works.

It is best to have tool support for roll-out of software releases. In-
stalling software without package management or other software distri-
bution tool support is a recipe for disaster. Only with tool support is it
possible to check which software is installed on a system in which ver-
sion, or which software a file belongs to. Both are essential capabilities
that are needed during incident and problem management. Sadly, cur-
rent software release tools lack support for cluster environments. Here
experienced IT staff have to augment vendor-supplied mechanisms with
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their own developments and own procedures to keep control over their
systems.

Please note that the requirements for software distribution support
depend on the target system. There is a vast difference if one wants to
roll-out a new Office version to a few thousand desktops, or if one in-
stalls a new Oracle release on a mission-critical server. While the first
can and should be automated and the distribution should utilize a push
model from a central distribution server, utilizing a fully automated push
model for an Oracle update is a definitive way to get a major outage.
Here the installation must be done on the server, and tool-supported in-
stallation steps are intermixed with manual checks if functionality and
performance are not impacted.

As in change management, a back-out plan is an indispensable part
of any release unit. The back-out plan must spell out both the organi-
zational and the technical details of how one can roll back to a previ-
ous state. If that is not possible for technical reasons, the back-out plan
must describe how a spare component can take over the service (e.g., the
disaster-recovery system can be utilized). It is also necessary to specify
the point of no return. This is the point in time when a roll back cannot
be done anymore because it would need too long. At this time, the ac-
tual state of the release roll-out must be reviewed and a decision must be
made as to whether one will continue successfully or whether it is better
to roll back and start anew at another date.

C.6 Information Gathering and Reporting

A German proverb says, “Do good things and tell about it.” This is also
true for any activity in data centers. A big problem for business owners,
executive managers, and fellow colleagues is that they do not know what
work has been done in the past and what is planned for the future.

An important sign of a well-run data center is that information is
gathered that provides metrics about the work that is done and the state
of the IT system. That information should be both technical and business-
oriented. As an example, it is good practice to collect information about:

• Changes
• How many incidents there are for a system
• How many changes fail
• How many changes lead to problems or incidents in a short time span
• Which releases are out, and the history of releases
• The rate of change for incidents, problems, and changes
• Failovers
• How many outages there are, and for how long
• How many and which IT systems are affected
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Of interest is also a more complex analysis that gives hints to im-
prove change and release processes. For example, consider the statistics
“how many changes fail or cause problems, depending on the number of
changes in a given time range.” When we have ten changes at a weekend,
and one of them fails – how many will we have when we have 50 changes
at a weekend? The answer cannot be generalized and depends greatly
on the available staff and available skills. But most often the relation is
not linear, and more changes may lead to more or less error, relatively
speaking.

One can improve one’s statistics by creating adequate categorizations.
Both change and problem categories are important. For example, let us
assume that we have the (simple) change categorization:

• New installation
• Function change
• Incident repair (emergency change)
• Problem repair
• Security upgrade

Even with such a simple categorization, we can already imagine that the
relation of errors to change categories is very interesting and can lead
to data that tells us where we need to improve our processes, to achieve
lower failure rates and thus higher availability. When the problems and
incidents are also categorized (e.g., according to how many people were
affected), then we can give even better input to process improvement pro-
posals.

It is best practice to generate several reports for different target audi-
ences that differ in information selection and level of details. For exam-
ple, a report for a business owner will present different information from
a report for the operations manager or the operations staff. The technical
reports should always contain the information that is sent to the business
owner. If she or he phones in and demands information for a specific item
in her or his report, this information should be available in the operations
manager’s report as well.

For executive management, establishment of a dashboard system is
sensible. Such a system collects information from many technical and
business systems and condenses them into key performance indicators
for essential business and IT services. Such information is typically pre-
sented on a very high abstraction level (e.g., “green/yellow/red traffic
lights” for essential services) to compress the overall state of IT into one
short table.

Better executive dashboards are tool-supported and also give the abil-
ity to “drill down” to more detailed information, maybe with a link to the
technical information systems for the executives who are interested in
technical details.
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planning, 290, 291, 296
quality characteristics, 322
restoration process, 291
scope, 295
site, 290, 297
site selection, 297
system, 88, 290
test context, 321
test goals, 319
tests, 318
timeline, 304

disaster-recovery project, 324
business requirements, 331
business view, 333
dependency diagram, 331, 345
failback, 343
file mirroring, 343, 349
implementation, 345
primary systems, 339
project goals, 331
RASIC chart, 335
redo-log shipping, 342, 345
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service level agreement, 333
system design, 336
system identification, 326
system mapping, 340

disaster-recovery site, 297
outsourcing, 298
own site, 298
reciprocal arrangements, 298
selection, 297

disk, 118
disk heart beating, 161
disk mirroring, 317

over two sites, 307
disk size, 102
disk speed, 102
distributed systems, 226
DNS, see Domain Name Service
DNS records, 257
DNS server, 190
Domain Name Service, 192, 271

time to live, 180
double parity Raid, 366
downstream ISP, 257
downtime, 24, 30
durability, 196
Dynamic Host Configuration Protocol,

267
dynamic routing protocol, 253

E
EIGRP, see Enhanced Interior

Gateway Routing Protocol
elementary concepts, 13
email gateway, 190
email server, 192
Emergency Pack, 323
empirical probability, 360
encrypted file transfers, 315
end-to-end test, 47, 134
Enhanced Interior Gateway Routing

Protocol, 254
environment

physical, see physical environment
environmental disaster, 287
escalation process, 33, 389
essential business functionality, 296
Ethernet, 235, 240
Ethernet switch, 238

component redundancy, 238

optimization, 251
event, 285
expected availability, 25
experience, 76
external experience, 51
Extranet, 237, 257

F
failback, 28, 303, 343
failfast, 161
failover cluster, 95, 150–176, 199, 217,

241, 270
application requirements, 218
batch jobs, 222
file locations, 220
functionality, 158
independence from the physical

host, 219
limitations, 156
provisioning, 221
services, 162, see also service
start and stop actions, 222
success rate, 166

failover ping-pong, 164, 170
failure clustering, 146
failure plot, 143
failure probability, 82
failure recovery, 40
failure scenarios, 20, 22, 35–40, 51, 53,

60, 79–86, 287, 293
evaluation, 82
mapping, 82

fan, 239
fast restore, 309
fault avoidance, 25
fault protection, 18, 23, 38–40
fault recovery, 23
fault-tolerant, 22
fault-tolerant systems, 226
file backup, 283
file mirroring, 313, 343, 349
file mirroring products, 315
file replication frequency, 314
file server software, 190
file synchronization, 173
file system, 170
file system size, 108
file system, unclean, 169
fire protection, 383
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firewall, 258
application gateway, 259
packet filter, 258
stateful inspection, 259

firewall cluster, 264
forbidden zone, 84
forced unmount, 169
four-eye principle, 97
front-end connection, 122
function point, 229
functionality, 133
functionality test, 88

G
gradual recovery, 288, 306

H
HA, see high availability
hardware components, 58, 59
hardware error, 149
hardware independence, 153
hardware repair, 107
heartbeat, 160
heat control, 381
heating, ventilation, and air condition-

ing, 381
hierarchical database, 194
high availability, 22–26

database server, 199
default gateway, 249
differences to disaster recovery, 294
testing, 229

host clustering, 150
host configuration tools, 172
host virtualization, 169, 184–187
host-based mirroring, 119
hot simulation/fire drill, 319
hot spare, 110, 154
hot standby, 154
HSRP, 249
HTTP, 191
human error, 56, 57, 287
HVAC, see heating, ventilation, and air

conditioning

I
I/O, 105
identity management server, 192
IGP, see Interior Gateway Protocol

immediate recovery, 305
implementation time frame, 48
incident, 285, 388
incident management, 51, 53, 152,

173, 388
inconsistent state, 169
infrastructure, 58
infrastructure components, 233
infrastructure management, 49
infrastructure service, 192
in-house software, 215, 218, 223
installation, 132, 172
integration test, 88
intercluster communication, 160
Interior Gateway Protocol, 253
intermediate recovery, 306
Intermediate System to Intermediate

System Protocol, 254
Internet, 237
Internet protocols, 235
Internet service provider, 256
Internet WAN connections, 256
intranet, 237
inventory system, 46
IP address, 268
IP protocol suite, 235
IS-IS, see Intermediate System to

Intermediate System Protocol
isolation, 196
ISP, see Internet service provider
IT Infrastructure Library, 17, 49, 141,

173, 387
IT service continuity, 16, 26, 45, 49,

288, 388
IT service identification, 46
IT service restoration, 287
IT staff cost, 15
ITIL, see IT Infrastructure Library

J
JMS, 213
journaling, 125, 170

K
KISS, 34, 74, 164

L
LAN, see local area network
LAN segment, 238, 240
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latency, 300
layer-2 switch, 238
layer-3 switch, 238
layer-7 switch, 177, 238
layered solution, 38
LDAP, 192, 276, 280
LDAP server, 278–280
legacy application, 210
legal regulations, 16
license server, 192
Lightweight Directory Access Protocol,

see LDAP
link aggregation, 244
load balancing

cluster, 93, 150, 176–183, 217
DNS based, 178
hardware based, 178, 180
IP rewriting, 178, 180
software based, 178, 181
target selection, 181

load distribution, 179
load sharing, 179
load tests, 230
local area network, 236
location, 47, 50
log files, 140
logical host, 154
logical host switch, 158
logical unit, see LUN
lost redundancy, 285
lost revenue, 15
lost work hours, 15
LUN, 118, 122

M
MAC address, 161, 240, 249, 268
maintenance contracts, 140
major outage, 18, 19, 26, 27, 33, 59,

289
major outage examples, 294
MAN, see metropolitan area network
manual fault handling, 63
manual workaround, 306
marketing material, 77
maximum data loss, 27
maximum outage time, 21, 23, 30, 33
mean cumulative function, 144
mean time between failures, 25, 142,

362

mean time to repair, 25, 365
memory, 104
message broker, 214
messaging server, 58, 191, 213
metro cluster, 9, 307
metropolitan area network, 236, 306
microcode, 121
middleware, 58, 189
middleware clusters, 309
middleware high availability

client awareness, 225
limitations, 224
pitfalls, 224

minimum IT resources, 296
minor outage, 18, 19, 22, 33
minor outage requirements, 22
mirrored components, 62
mirroring, 116

Raid1, 112
remote, 122

mission critical, 18, 28, 45, 46, 49
monitoring, 139, 284, 382, 383
Moore’s Law, 100, 155, 183
MQSeries, 213
MTBF, see mean time between failures
MTTR, see mean time to repair
multi-layer switch, 238
Murphy’s Law, 26, 389, 394
MySQL, 190

N
NAS, see network-attached storage
NAT, see network address translation
network, 234
network address translation, 257, 258

dynamic, 262
overloading, 262
packet rewriting, 260
static, 261

network card, 105
network database, 194
network devices, 238
Network File System, see NFS
network layer, 235
network-attached storage, 125
NFS, 125, 190
n-version programming, 71
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O
objectives, 42, 45
object-oriented database, 194
one-off software, 215
Open Shortest Path First Protocol, 254
operating system, 58
operating system disk, 108
operating system error, 149
operational readiness, 133
Oracle Data Guard, 205
OSI Reference Model, 234
OSPF, see Open Shortest Path First

Protocol
outage categorization, 17, 22, 27, 28,

40, 46, 51, 53
outage consequences, 14
outage distribution, 31
outage duration, 31
outage frequency, 31, 33
outage time, 21, 30, 33, 294
outsourcing, 47, 51

P
package management, 396
packaging, 172
packet filter, 258
parity, 113, 115, 116
parity disk, 113
passive dynamic routing, 252
patch management, 157
performance test, 133
persistent data, 19, 62, 72
physical environment, 26, 59
physical hosts, 154
physical layer, 235, 238
physical security, 380
point-in-time image, 124
Poisson formula, 360
potential failures, 55
power supply, 106, 239, 384
preferred node, 158
primary site, 290, 297
primary system, 28, 290
probability of failures, 363
problem cause, 39, see also root cause

analysis
problem management, 51, 53, 388, 389
process changes, 47
process framework, 49

process oriented approach, 43
product line, 128
product roadmap, 129
production system, 88
project scope, 20, 36, 60, 61
project-specific system stack, see

system stack, project specific
provisioning, 172
publishing DNS server, 273, 275

Q
quorum devices, 161

R
rack cabinet, 386
Raid, 109

double parity, 366
reliability, 364–371
software Raid, 117

Raid configuration, 365
comparison, 367
guidelines, 371

Raid controller, 118
Raid group, 109
Raid level, 109
Raid0 (striping), 111
Raid01, 365

mirroring, 112
striping and mirroring, 116

Raid3, 113, 366
Raid5, 115, 366
Raid6, 116, 366
Raid10, 365

striping and mirroring, 116
RaidDP, 116, 366
raised floor, 378
Rapid STP, 247
RASIC chart, 335
RCA, see root cause analysis
RDBMS, see relational database

management system
reaction time, 140
recovery from a major outage, 287
recovery point objective, 27, 33, 83,

196, 205, 290, 297
recovery time objective, 27, 33, 83, 166,

290, 297, 303
redo log, 196
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redo-log shipping, 95, 204, 310, 311,
342, 345

redundancy, 34, 38, 52, 53, 61, 66,
69, 75, 78, 149, see also almost
redundant

notation, 63
redundancy management, 62, 66, 73
redundant array of inexpensive disks,

see Raid
redundant LAN segment, 243
reference installation, 131
regulatory compliance, 16
relational database management

system, 195
relational databases, 193
release management, 26, 388, 395
reliability, 25

bathtub curve, 374
reliability calculations, 372
reliability tests, 138
remote mirroring, 122
repair, 25
repair time failure rate, 365
repetition, 61
replacement system, 27
replication, 52, 61, 62
reporting, 34, 397
reputation damage, 15
requirements, 32, 51, 55
resource group, 154
resource management, 227
responsibility, 47
restore, see backup
reverse proxy, 178, 181
RIP, see Routing Information Protocol
risk management, 16, 17, 61, 73
risks, 294
roadmap, 4
robustness, 34, 38, 52, 75
roles and responsibilities, 34
rollback, 196
root bridge, 247
root cause analysis, 390
router, 248
routing in LANs, 253
Routing Information Protocol, 252, 254
routing meltdown, 255
routing problems, 263
RPO, see recovery point objective

RSTP, see Rapid STP
RTO, see recovery time objective

S
sabotage, 20
SAN, see storage area network
SAP, 205, 215
SAP server, 89–97
Sarbanes-Oxley Act, 17, 61, 321
scenario, see failure scenarios
scheduled downtime, 24
scope, see project scope
security management, 49
senior management, 53
server availability, 296
server consolidation, 183
service, 154

activation, 163
check, 163, 167
deactivation, 164, 168
declaration, 162
failover, 165, 169
migration, 158, 165, 169
restart, 165
start, 163
stop, 164, 168
switch, 158, 165, 169

service brokerage, 210
service delivery, 17, 46
service dependencies, 162
service deterioration, 32
service disruption, 287
service interruption, 18
service level agreement, 2, 29, 31–34,

40, 82, 166, 167, 256, 289
major outage, 33
minor outage, 33

service level management, 388
service level, restricted, 27
service loss, 289
service management, 17, 49, 53
service recovery time, 33, 303
serviceability, 25
session abort, 151
shadow pages, 198
shared application server, 211
shared cluster state, 160
shared storage, 127, 156, 171
simplicity, 34, 75
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single component, 319
single point of failure, 23, 62, 65, 71,

73, 85, 92, 104, 119, 239
site availability, 297
skill assessment, 97, 107
SLA, see service level agreement
smoke detection, 383
smolder, 383
Snapshot, 124
software components, 57, 58
software errors, 152
software Raid, 117
solution patterns, 28, 86
solution review, 86
solution roadmap, 78
SOX, see Sarbanes-Oxley Act
Spanning Tree Protocol, 8, 246, 247

inherent problems, 247
loop, 248

spiral model, 37, 38
split brain syndrome, 160, 308
split mirror, 124
SPOF, see single point of failure
SQL, 191
SRDF, 307
ssh tunnel, 315
SSL tunnel, 315
staging system, 88
start of production, 139
state synchronization, 298
stateful inspection, 259
statistics, 142, 398

about outages, 359
storage area network, 124
storage processor, 121
storage system, 59, 95, 119
STP, see Spanning Tree Protocol
stress tests, 138, 230
stretched cluster, 307
striping, 103, 116

Raid0, 111
support contract, 19
switch, see Ethernet switch
synchronous output, 199
system acceptance test, 138
system backup, 283
system bus, 105
system categorization, 17, 23, 27
system crash, 171

system design, 41, 42, 55
system designer, 3
system disk, 108
system implementation process, 87
system implementor, 3
system logging, 173
system model, 42, 51
system operations, 387
system stack, 52, 53, 56, 60, 69

project specific, 60, 67, 79, 91
system structure, 41, 55
system type selection, 89

T
technical magazines, 77
technology oriented approach, 43
test categories, 320
test end-to-end, 47
test limits, 230
test of hypothesis, 361
test of significance, 361
test plan, 134
test scenarios, 134, 230
test system, 88
testing, 176, 229
threshold, 21
tie-breaker, 161
time to live, 257
time to recovery, 303
traffic management, 177
transaction, 20, 196
transaction manager, 58, 192
transaction monitor, 192
transparent failure handling, 18
trunking, 245
TTL, see Domain Name Service, time

to live

U
UAT, see user acceptance test
unclean file system, 169
undo log, 196
uninterrupted service, 21, 23
unscheduled downtime, 24
upgrade process, 26
UPS, see power supply
usenet, 77
user acceptance test, 139
user dialog, 20
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user environment, 56
user groups, 77

V
vendor maintenance concept, 130
vendor selection, 128
vendor visit, 129
vendors, 53
ventilation, 382
virtual ethernet interface, 249
virtual IP interface, 128, 161
virtual LAN, 236
virtual machines, 184
virtual memory, 127
virtual private network, 237, 315
virtual router redundancy protocol,

249
virtual storage, 127
virtualization, 52, 77, 78, 126, 153, 183
VLAN, 246, see virtual LAN
volume group, 128
volume manager, 117
VPN, 257, see virtual private network
VRRP, 249, 256

vulnerability during failover time, 304

W
WAN, see wide area network
war room, 323
Web server, 58, 90, 93, 168, 177, 190,

191, 205
authentication scheme, 208
configuration, 207
content management system, 207

Web server content
dynamic, 206
static, 206

Websphere MQ, 213
wide area network, 237, 255
write-ahead log, 196

X
X.500 server, 279, 281
XML database server, 194

Z
Zachman Framework, 42
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